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During evolution, a nervous system emerged that

enabled animals to observe their world, learn

behavioral patterns and communicate with one

another. One lineage of the animal kingdom

eventually produced a communication system with

infinite expressibility. Human language is infinite,

not because everything can be expressed, but because

there are infinitely many sentences; no finite list can

contain all possible sentences of a given language.

Language allows the transfer of unlimited,

non-genetic information among individuals and thus

induces a new mode of evolution. Language gives rise

to cultural evolution far beyond what is possible for

non-speaking animals. Among all great evolutionary

innovations that affected evolution itself, such as

nucleic acids, cells, chromosomes, multi-cellular

organisms, the nervous system etc, language is the

only one (presently) confined to one species.

Humans and chimps diverged some 5 million years

ago. Because humans have complex language, but

chimps do not, the final components of the biological

basis of human language must have arisen since then.

It is clear, however, that evolution did not build the

human language faculty de novo in the last few

million years, but used material that had evolved in

other animals over a much longer time. Many animal

species have sophisticated cognitive abilities in terms

of understanding the world and interacting with one

another1. Evolution often uses existing structures for

new and sometimes surprising purposes. Monkeys,

for examples, appear to have brain areas similar to

our language centers, but seem to use them for

controlling facial muscles and for analyzing auditory

input2. Evolution may have had an easy task here to

reconnect these centers for human language. Hence

the human language instinct should not be seen as

the result of a sudden moment of inspiration of

evolution’s blind watchmaker, but rather the

consequence of several hundred million years of

‘experimenting’with animal cognition.

Language allowed our ancestors to share ideas

and experiences, and to solve problems in parallel.

The adaptive significance of human language is

obvious. It pays to talk. Cooperation in hunting,

making plans, coordinating activities, task sharing,

social bonding, manipulation and deception all

benefit from an increase in expressive power. Natural

selection (we use it to include sexual selection) can

certainly see the consequences of communication3,4.

The linguist Ray Jackendoff outlines how human

language reveals an architecture that seems to have

been formed by distinct innovations that were added

over time5,6. He also finds ‘fossils’ of earlier, more

primitive communication systems in the grammar of

modern language. Part of Jackendoff ’s program is an

extension of Bickerton’s idea that modern language

evolved from ‘protolanguage’, which still can be found

in our brain7. Protolanguage emerges whenever

full-blown language is disrupted such as in pidgin

languages or in children who were deprived of social

interaction (the most famous case is Genie). These are

some examples of biological and linguistic evidence

which point towards a gradual evolutionary process

that has shaped human language. 

Evolution is based on well-defined, mathematical

principles: mutation and selection. Hence in order to

talk about language evolution, it seems essential to

construct a precise mathematical framework. This is

what we do in this article. We will discuss how a

group of individuals (humans or other animals) can

evolve a communication system where arbitrary

signals become associated with specific referents. We

will show that mistakes in communication lead to an

error limit, which can be overcome by sequencing basic

signal units (such as phonemes) into words. We discuss

a necessary condition under which natural selection

can see the advantage of syntactic communication.

Finally, we present a general framework for the

evolution of grammar acquisition and discuss how

natural selection acts on universal grammar. The

material presented here is part of a larger effort to

establish a connection between evolutionary biology,

linguistics, and cognitive science8–21. 

Arbitrary signs

First we ask how natural selection can design a simple

communication system where certain, arbitrary

signals become associated with specific referents22–26.
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Consider an association matrix, A, whose entries, a
ij
,

specify the strength of the association between

referent i and signal j (see Fig. 1). The association

matrix determines the probability that a speaker will

use signal j when wanting to communicate referent i,

and the probability that a hearer will interpret signal j

as denoting referent i. Hence from the association

matrix we can calculate the probability of correct

information transfer between a speaker and a hearer.

Such an association matrix is at the basis of any

animal communication system. It is also a convenient

description for the lexical matrix of human language.

The lexical matrix specifies the arbitrary relations

between word form and word meaning27.

The arbitrariness of the association between

signals and referents gives rise to the problem of

coherence: if different individuals can assign

different signals to the same referent (or vice versa),

then how does the population achieve a coherent

communication system where everybody uses the

same association between signals and referents

(or word forms and word meanings)?

Let us consider evolutionary dynamics. There is

a group of individuals. In the beginning, each

individual has a different, randomly chosen A matrix.

Thus no signal is associated with a specific referent.

For any given referent, there is only a small probability

that a speaker-hearer pair will have a successful

communication about it. Furthermore, we assume that

individuals reproduce and generate offspring that

inherit – genetically – a mechanism for learning the

association matrix of their parents or others. After

specifying some learning mechanism, we can simulate

this evolutionary process. We will, however, observe

that no coherent communication will evolve. In this

case, there is no selection against individuals who do

not learn any associations at all. The mechanism for

learning the A matrix will eventually deteriorate.

For natural selection to act on language ability,

there must be a reward for successful communication.

We have to link language to biological ‘fitness’. Let us

therefore assume that successful communication

leads to a ‘payoff ’ for both the speaker and the hearer.

In the spirit of evolutionary game theory, we link

payoff to reproductive success28,29. Individuals that

communicate more successfully have increased

survival probabilities and leave more offspring.

Let us first assume that offspring learn their

association matrix from some randomly chosen

individuals or some population average of the A matrix

regardless of payoff. Again no coherent language will

evolve. The reason is that more successful A matrices

do not proliferate faster than less successful ones.

If however we assume that offspring learn the

A matrix of their parents or of other individuals

proportional to their payoff, then a coherent

communication system can emerge. In both cases,

successful A matrices spread. Learning from the

parents works, because more offspring are born to

parents with successful A matrices. Learning
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Fig. 1. (a) The association matrix, A, links signals to referents. The
lexical matrix of human language links word form to word meaning.
The elements of this matrix, aij, are non-negative real numbers and
denote the strength of the association between referent i and signal j.
A speaker is described by a P matrix. The element pij denotes the
probability of using signal j for referent i. A hearer is described by a
Q matrix. The element qij denotes the probability of interpreting
signal j as denoting referent i. The P and Q matrices are derived 
from the A matrix by normalizing rows and columns respectively.
(b) Suppose a speaker uses signal j for referent i. Correct 
communication occurs if the hearer receives signal j and associates 
it with referent i. Let us now consider two individuals I and J with
association matrices AI and AJ. We can define the payoff for I
communicating with J as:

The term denotes the probability that individual I will
successfully communicate referent i to individual J. This probability
is summed over all objects and averaged over the situation where
individual I signals to individual J and vice versa. Note that the payoff
function assumes that communication about each object occurs with
the same frequency. (c) We can also assume that signals can be
mistaken for each other. There is an error matrix, U, between speaker
and hearer. This model is based on Shannon’s information theory. The
P, U, and Q matrices describe, respectively, encoding, a noisy channel
and decoding. In our evolutionary context, we observe that errors
during communication often lead to a scenario where maximum
fitness is achieved for systems with limited repertoire size.
Sequencing of phonemes into words (that is increasing the code
length) can extend this error limit32.
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preferentially from other individuals with higher payoff

gives a direct advantage to successful A matrices.

For either case, we can observe that after a few

generations different individuals have similar

A matrices and certain associations between specific

signals and referents become stronger whereas

other – conflicting – associations disappear. The

evolutionary optimum is a state where each signal is

uniquely associated with one referent and vice versa.

The particular signal-referent pairing is arbitrary.

For n signals and referents there are n! evolutionarily

stable A matrices30. The population will converge to one

arbitrary A matrix out of these n! possibilities. Hence

the model describes the emergence of arbitrary signs.

The next task is to calculate the minimum

cognitive requirements for the language learning

device that leads to the evolution of a coherent

association matrix. This task turns out to be difficult.

We have partial results for specific cases, but as yet

no general model that is analytically tractable.

A simplified model that provides analytical

insights makes the following assumptions31: (1) the

population size is large, the evolutionary dynamics are

deterministic; (2) the A matrix has only binary entries:

if a
ij

= 1, there is an association between referent i and

signal j; if a
ij

= 0, there is none; (3) offspring learn the A

matrix of one parent. If the parent’s A matrix has a 1

entry in a particular place, the offspring’s A matrix has

a 1 entry in the same place with a probability 1 – u. If

the parent’s A matrix has a 0 entry in a particular place,

the offspring’s A matrix will always have a 0 entry in

this place. Therefore, offspring do not form new

associations. For this model, unique signal-referent

pairings are the only stable equilibrium solutions of the

evolutionary dynamics. The maximum number of

signal-referent pairs that can evolve and be maintained

is given by n = 1/(2u). On average an individual knows

signals, and two randomly chosen individuals

have n/esignals in common. (Here, e is Euler’s number.)

We do not have analytic results for the case where

offspring can erroneously form associations that are

not present in their parent’s A matrix. Computer

simulations for finite populations and stochastic

dynamics suggest the following results26,31. If this

type of mistake is too frequent then no coherent

communication can evolve. If the error rate is below a

threshold then coherent associations can emerge. The

observed associations are close to the evolutionary

optimum, but some signals may refer to more than

one referent (homonymy) and some referents may be

associated with more than one signal (synonymy).

Associations are metastable. From time to time there

are transitions among predominating A matrices. In

the context of historical linguistics, this corresponds

to spontaneous changes in lexicon.

Word formation

Association matrices are useful descriptions of both

animal communication systems and the lexical matrix

of human language. In the first case, they describe the

association between animal signals and their meaning,

in the second case they describe the association

between word form and word meaning. There are,

however, fundamental differences between animal

signals and word forms. Animal communication

appears to be based on fairly limited repertoires

(perhaps 10–100 signals), whereas human languages

use large numbers of words (of the order of 10 000 or

more). Furthermore, human language makes

extensive use of combinatorics: words are sequences of

well-defined smaller building blocks, called phonemes.

In this section, we formulate an argument for why it

is necessary that words are made up of phonemes.

Suppose we have a communication system where

certain signals are unambiguously associated with

certain referents. Clearly the communicative potential

and therefore the biological fitness of the system

increases with the number of signals. However, as the

number of signals increases, chances are that some of

them will sound quite similar to others. If we admit

the possibility that signals can be mistaken for each

other, there is a limit to the increase in fitness. A

general mathematical result shows that for any such

signaling system there is a maximum fitness which

cannot be overcome by adding more signals32.

If in addition we assume that different referents

have different fitness contributions, then usually

there exists an intermediate number of signals which

maximizes fitness. Adding further signals reduces

fitness. In this case, natural selection favors limited

repertoires where a small number of signals denote

the most valuable referents25.

This error limit can be extended if combinatorial

sequences of signals are used. It can be shown that

the maximum fitness of a communication system

increases exponentially with the length of the

sequence33. This observation is related to Shannon’s

‘noisy coding theorem’34. If natural selection acts on

the rate of communication, then there is an optimum

word length that maximizes fitness.

Human language makes use of this principle.

Words are sequences of individual phonemes. Each

human language uses only a small fraction of all

possible phonemes, but sequences of phonemes give

rise to large numbers of words. The same argument

holds for sign language: sequencing of basic units

increases the error limit.

A first step towards syntactic communication

Human language uses combinatorics on two levels:

sequences of phonemes form words, sequences of

words form sentences. The linguist Charles Hockett

called this design ‘duality of patterning’. The

sequencing of words into sentences is a necessary

component of syntactic communication. Let us define

compound signals as those that consist of parts that

have their own meaning. In contrast, elementary

signals cannot be decomposed into parts that have

their own meaning. The alarm calls of vervet monkeys

for leopard, snake or eagle are examples of elementary

en /
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signals35. Word stems (listemes) of human languages

are elementary signals, but phrases, sentences or any

syntactic structures of human languages represent

compound signals. The question which we would like

to answer is how natural selection can guide the

emergence of such syntactic structures (see Fig. 2).

Clearly, communication systems with compound

signals have greater potential. The number of

possible messages can greatly exceed the number of

components (words) that make up these messages.

For elementary communication, each message has to

be learned, whereas compounding allows to express

new messages that have not been encountered before.

In human language, words have to be memorized, but

most sentences are new constructions. Given these

advantages it seems surprising that animals make

little (or no?) use of compound signals.

An evolutionary model for the transition from

elementary to compound communication shows that

certain conditions have to be met before natural

selection can see the advantages of compounding36.

First, the total number of relevant messages has to

exceed a critical value. Hence, only if the communication

system has reached a certain size, can there be an

advantage to using compound signals. Smaller systems

are more efficiently encoded by elementary signals.

Second, the compound signals must be able to encode the

relevant messages in such a way that individual

components occur in many different messages. If each

component would only appear in one or a few messages

then there is little chance that this system might

out-compete non-syntactic communication.

Apart from combining elementary signals into

compound messages, syntactic communication

requires rules that specify how the parts of signals

relate to each other to convey a certain meaning. This

brings us to our next topic, the evolution of grammar.

Universal and other grammars

The most fascinating aspect of human language is

grammar. Grammar is a computational system that

mediates a mapping between linguistic form and

meaning. Grammar is the machinery that gives rise

to the unlimited expressibility of human language.

Children develop grammatical competence

spontaneously without formal training. All they

need is interaction with people and exposure to

normal language use. The child hears a certain

number of grammatical sentences and then

constructs an internal representation of the rules that

generate grammatical sentences. Chomsky pointed

out that the evidence available to the child does not

uniquely determine the underlying grammatical

rules37. This phenomenon is called the ‘poverty of

stimulus’38. The ‘paradox of language acquisition’39

is that children nevertheless reliably achieve correct

grammatical competence. How is this possible?

As Chomsky pointed out: ‘To learn a language,

then, the child must have a method for devising an

appropriate grammar, given primary linguistic data.

As a precondition for language learning, he must

possess, first, a linguistic theory that specifies the form

of grammar of a possible human language, and second,

a strategy for selecting a grammar of the appropriate

form that is compatible with the primary linguistic

data.’ (Ref. 37).Chomsky introduced the term

Universal Grammar (UG) to denote the preformed

‘linguistic theory’, the initial pre-specification of the

form of possible human grammars40.

Hence, for language acquisition the child needs a

mechanism for processing the input sentences and

a ‘search space’ of candidate grammars from which to

choose the appropriate grammar. Chomsky’s original

concept is that UG is a rule system that generates the

search space. More recent views use UG to encompass

both the search space and the mechanism for

evaluating input sentences. Therefore, UG has

become almost synonymous with ‘mechanism of

language acquisition’.

The notion of an innate, genetically encoded, UG is

controversial41–43. Much of the discourse, however,

focuses on which specific linguistic features are

innate (for example, phrase structure rules of X-bar

theory, or lexical categories such as nouns and verbs)

and to what extent UG is a specific syntactic module

or simply uses general purpose cognitive abilities.

We do not participate in this controversy. Instead we

choose a sufficiently general formulation of the

process of language acquisition. Ultimately

everybody agrees that human beings require some

innate components for language acquisition. These

innate components are what we call UG.

First of all, let us state that ‘poverty of stimulus’

has an elegant mathematical formulation known as

Gold’s theorem44. Suppose there is a rule that

generates a subset of all integers. A person is provided

with a sample of integers that are generated by the

rule. After some time the person is asked to produce

other integers that are compatible with the rule.

Gold’s theorem states that this task cannot be solved.

Any finite number of sample integers is not enough to
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Fig. 2. A very simple
model for exploring the
emergence of syntactic
communication.
(a) Non-syntactic
communication uses
elementary signals
refering, for example, to
the events ‘lion sleeping’,
‘monkey running’.
Syntactic communication
uses compound signals
refering, for example, to
the objects ‘lion’, ‘monkey’
and the actions ‘running’
and ‘sleeping’. (b) An
evolutionary model36

shows that syntactic
communication is only
favoured by natural
selection, firstly, if the
number of relevant
messages exceeds a
certain threshold and,
secondly, if elementary
signals can be used in
sufficiently many different
messages. 



determine uniquely the underlying rule. The person

can only solve the task if she had a preformed

expectation determining which rules are possible (or

likely) and which are not. The sample integers

correspond to the sentences presented to the child,

the rule corresponds to the grammar used by the

parents (or other speakers). The preformed

expectation is universal grammar. Hence, in this

sense ‘poverty of stimulus’and the necessity of an

innate universal grammar are not controversial

issues, but mathematical facts.

Let us now formulate a mathematical description

of language acquisition45–50. The sentences of all

languages can be enumerated. We can say that a

grammar, G, is a rule system that specifies which

sentences are allowed and which sentences are not

allowed (see Fig. 3). Universal grammar, in turn,

contains a rule system that generates a set (or a

search space) of grammars, {G
1
, G

2
,…, G

n
}. These

grammars can be constructed by the language learner

as potential candidates for the grammar that needs to

be learned. The learner cannot end up with a

grammar that is not part of this search space. In this

sense, UG contains the possibility to learn all human

languages (and many more). Figure 4 illustrates this

process of language acquisition. The learner has a

mechanism to evaluate input sentences and to choose

one of the candidate grammars that are contained in

his search space.

More generally, it is also possible to imagine that

UG generates infinitely many candidate grammars,

{G
1
, G

2
,…}. In this case, the learning task can be solved

if UG also contains a prior probability distribution on

the set of all grammars. This prior distribution biases

the learner towards grammars that are expected to be

more likely than others. A special case of a prior

distribution is one where a finite number of grammars

is expected with equal probability and all other

grammars are expected with zero probability, which is

equivalent to a finite search space.

A fundamental question of linguistics and cognitive

science is what are the restrictions that are imposed

by UG on human language. In other words, how much

is innate and how much is learned in human language.

In learning theory51,52, this question is studied in the

context of an ideal speaker–hearer pair. The speaker

uses a certain ‘target grammar’. The hearer has to

learn this grammar. The question is, what is the

maximum size of the search space such that a specific

learning mechanism will converge (after a number of

input sentences, with a certain probability) to the

target grammar.

In terms of language evolution, the crucial

question is what makes a population of speakers

converge to a coherent grammatical system. In other

words, what are the conditions that UG has to fulfill

for a population of individuals to evolve coherent

communication? In the following, we will discuss how

to address this question53,54.

Population dynamics of grammar acquisition

Imagine a group of individuals that all have the same

UG, given by a finite search space of candidate

grammars, G
1
,...,G

n
, and a learning mechanism for

evaluating input sentences. Let us specify the similarity

between grammars by introducing the numbers s
ij

which denote the probability that a speaker who uses G
i

will say a sentence that is compatible with G
j
.

TRENDS in Cognitive Sciences  Vol.5 No.7  July 2001

http://tics.trends.com

292 OpinionOpinion

Grammar

Lexical matrixGrammar

Phonological rules

Hearing and speaking

Word form

W
or

d 
m

ea
ni

ng

1 1

1

1

1

1

1

1

Linguistic form 

M
ea

ni
ng

1 1

1

1 1

1

1

1

1

0

1

00

01

10

11

000

001

...

0

00

11

000

...

1

01

10

001

...

Set of all sentences UngrammaticalGrammatical

G

Syntactic rules  Conceptual rules

  Perception and action 

(a)

(b)

(c)

TRENDS in Cognitive Sciences

Fig. 3. (a) The grammar of human language is a rule system that encompasses phonological,
syntactic and conceptual (semantic) rules. The phonological rules are linked to hearing and speaking,
whereas the conceptual rules are linked to perception and action. The linguist Ray Jackendoff
describes phonology, syntax and semantics as three independent combinatorial systems that are
linked via interfaces. (b) Mathematically, a grammar can be seen by a rule system that divides a
countable infinite number of sentences into two subsets, grammatical and ungrammatical. (c) More
generally, a grammar should be seen as a rule system that generates a mapping between linguistic
form and meaning. Note the formal similarity between such a ‘grammar matrix’ and the lexical matrix,
which links word forms to word meanings. The important differences are size and compressability:
the lexical matrix consists of a finite number of memorized items, whereas the grammar matrix has
infinitely many entries that can be compressed into rules. Clearly the grammar matrix can also be
interpreted as including the lexical matrix. Such a representation holds the starting point for a
possible unified theory that describes both the acquisition of lexical items and grammatical rules. 



We assume there is a reward for mutual

understanding. The payoff for someone who uses G
i
and

communicates with someone who uses G
j
is given by:

This is simply the average taken over the two

situations when G
i
talks to G

j
and when G

j
talks to G

i
.

Denote by x
i
the relative abundance of individuals

who use grammar G
i
. Assume that everybody talks to

everybody else with equal probability. Therefore, the

average payoff for all those individuals who use

grammar G
i
is given by:

We assume that the payoff derived from

communication contributes to biological fitness;

individuals leave offspring proportional to their payoff.

These offspring inherit the UG of their parents. They

receive language input (sample sentences) from their

parents and develop their own grammar. At first, we

will not specify a particular learning mechanism but

introduce the stochastic matrix, Q, whose elements, q
ij

denote the probability that a child born to an individual

using G
i
will develop G

j
. (In this first model, we

assume that each child receives input from one

parent. We are currently working on models that allow

input from several individuals.) The probabilities that

a child will develop G
i
if the parent uses G

i
is given by

q
ii
. The quantities q

ii
measure the accuracy of

grammar acquisition. If q
ii

= 1 for all i, then grammar

acquisition is perfect for all candidate grammars.

The population dynamics of grammar evolution

are given by the following system of ordinary

differential equations, which we call the ‘language

dynamics equations’:

The term –φx
j
ensures that the total population

size remains constant: the sum over the relative

abundances, , is 1 at all times. The variable 

denotes the average fitness or ‘grammatical

coherence’of the population. The grammatical

coherence is given by the probability that a randomly

chosen sentence of one person is understood by

another person. It is a measure for successful

communication in a population. If φ= 1 all sentences

are understood and communication is perfect. In

general, φis a number between 0 and 1.

The language dynamics equation is reminiscent of

the quasispecies equation of molecular evolution55,

but has frequency dependent fitness values: the

quantities f
i
depend on the relative abundances,

x
1
,…, x

n
. In the limit of perfectly accurate language

acquisition, q
ii

= 1, we recover the replicator

equation of evolutionary game theory29. Thus, our

model provides a connection between two of the most

fundamental equations of evolutionary biology.

Evolution of grammatical coherence

In general, Eqn 1 admits multiple (stable and

unstable) equilibria. For low accuracy of grammar

acquisition (low values of q
ii
), all grammars, G

i
, occur

with roughly equal abundance. There is no

predominating grammar in the population.

Grammatical coherence is low. As the accuracy of

grammar acquisition increases, however, equilibrium

solutions arise where a particular grammar is more

abundant than all other grammars. A coherent

communication system emerges. This means that if

the accuracy of learning is sufficiently high, the

population will converge to a stable equilibrium with

one dominant grammar. Which one of the stable

equilibria is chosen, depends on the initial condition. 

The accuracy of language acquisition depends on

UG. The less restricted the search space of candidate

grammars is, the harder it is to learn a particular

grammar. Depending on the specific values of s
ij

some

grammars may be much harder to learn than others. For

example, if a speaker using G
i
has a high probability

of formulating sentences that are compatible with

many other grammars (s
ij

close to 1 for many different j)

then G
i
will be hard to learn. In the limit s

ij
= 1, G

i
is

considered unlearnable, because no sentence can

refute the hypothesis that the speaker uses G
j
.

The accuracy of language acquisition also depends

on the learning mechanism that is specified by UG.

An inefficient learning mechanism or one that

evaluates only a small number of input sentences

will lead to a low accuracy and hence prevent the

emergence of grammatical coherence.

We can therefore ask the crucial question: which

properties must UG have such that a predominating

grammar will evolve in a population of speakers? In

other words, which UG can induce grammatical

coherence in a population? As outlined above, the

answer will depend on the learning mechanism and

the search space. We can derive results for two

learning mechanisms that represent reasonable

boundaries for the actual, unknown learning

mechanism used by humans.

The memoryless learning algorithm, a favorite

with learning theorists, makes little demands on the
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Universal
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Fig. 4. Universal
grammar specifies the
search space of candidate
grammars and the
learning procedure for
evaluating input
sentences. The basic idea
is that the child has an
innate expectation of
grammar (for example a
finite number of
candidate grammars) and
then chooses a particular
candidate grammar that
is compatible with the
input.



cognitive abilities of the learner. It describes the

interaction between a teacher and a learner. (The

‘teacher’can be one or several individuals or the whole

population.) The learner starts with a randomly chosen

hypothesis (say G
i
) and stays with this hypothesis as

long as the teacher’s sentences are compatible with this

hypothesis. If a sentence arrives that is not compatible,

the learner will at random pick another candidate

grammar from his search space. The process stops after

a certain number of sentences. The algorithm is called

‘memoryless’, because the learner does not remember

any of the previous sentences nor which hypotheses

have already been rejected. The algorithm works,

primarily because once it has the correct hypothesis it

will not change anymore (this is incidentally the

definition of so called ‘consistent learners’).

The other extreme is a batch learner (resembling

Jorge Louis Borges’man with infinite memory). The

batch learner memorizes all sentences and at the end

chooses the candidate grammar that is most

compatible with the input.

For the memoryless learner, we can show that,

under some assumptions on the values s
ij
,

grammatical coherence is possible if the number of

input sentences, b, exceeds a constant times the

number of candidate grammars, b > C
1
n. For the

batch learner, the number of input sentences has to

exceed a constant times the logarithm of the number

of candidate grammars, b > C
2
log n. These

inequalities define a ‘coherence threshold’, which

limits the size of the search space relative to the

amount of input available to the child. A UG that does

not fulfill the coherence threshold does not lead to a

stable, predominating grammar in a population. The

learning mechanism used by humans will perform

better than the memoryless learner and worse than

the batch learner; hence it will have a coherence

threshold somewhere between b > C
1
n and b > C

2
log n.

Cultural evolution of grammar

The language dynamics equation describes

deterministic dynamics for a large population size.

Smaller population sizes can play a role if we consider

stochastic language dynamics. Computer simulations

suggest that the equilibrium solutions of the

deterministic system correspond to metastable states.

Individual grammars will dominate for some time and

then be replaced by other grammars. Such transitions

are more likely to occur between similar grammars.

In a small population, the requirements imposed

on UG are also slightly stronger. Grammatical

coherence in a population will require a larger

number of input sentences or smaller search spaces.

A detailed mathematical study of the stochastic

dynamics of our system is still outstanding.

Individual candidate grammars, G
i
, can also differ

in their performance. Some grammars can be less

ambiguous or describe more concepts than others. In

such a context, the language dynamics equation can

describe a cultural evolutionary optimization of

grammar within the space of grammars generated by

UG. It also provides a general framework for studying

the dynamics of grammar change in the context of

historical linguistics56,57.

Biological evolution of universal grammar

So far we have assumed that all individuals have the

same UG. Studying the biological evolution of UG, we

need variation in UG and a system that describes

natural selection among variants of UG.

At first, let us consider universal grammars with

the same search space and the same learning

procedure, the only difference being the number of

input sentences, b (Ref. 58). This quantity is

proportional to the length of the learning period. We

find that natural selection leads to intermediate

values of b. For small b, the accuracy of learning the

correct grammar is too low. For large b, the learning

process takes too long (and thus the rate of producing

children that have acquired the correct grammar is

too low). This observation can explain why there is a

limited language acquisition period in humans.

Second, consider universal grammars, U
1
and U

2
,

that differ in the size of their search space, n, but have

the same learning mechanism and the same value of b.

In general, there is selection pressure to reduce n.

Only if n is below the coherence threshold, can the

universal grammar induce grammatical

communication. In addition, the smaller n, the larger

is the accuracy of grammar acquisition. There can,

however, also be selection for larger n: suppose

universal grammar U
1
is larger than U

2
(that is

n
1
>n

2
). If all individuals use a grammar, G

1
, that is

both in U
1
and U

2
, then U

2
is selected. Now imagine

that someone invents a new advantageous

grammatical concept which leads to a modified
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• What are the consequences of small population sizes and stochasticity
on the dynamics of grammar acquisition? How does the coherence
threshold depend on population size?

• Can we formulate a tractable model, where each individual learns
grammar or lexicon from several other individuals (not just from one
other individual)? What difference does it make?

• In a spatial model, do the equations lead to different grammars in
different regions? Are such patterns stable?

• Can we obtain exact results on the competition between variants of UG
that differ in their search space?

• Can we formulate a unified model of language acquisition that includes
both grammar and lexicon learning?

• What is the consequence of introducing specific assumptions about the
rules that specify the candidate grammars?

• What are the language dynamics for infinitely large search spaces with
prior probability distribution?

• An interesting difference between humans and animals is that human
communication can be stimulus free: messages are often not prompted
by environmental stimuli. How can we explain this behavioral
difference? What is its adaptive significance?

Questions for future research
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grammar G
2
which is in U

1
, but not in U

2
. In this case,

the larger universal grammar is favored. Hence there

is selection both for reducing the size of the search

space and for remaining open minded to be able to

learn new concepts. For maximum flexibility, we

expect search spaces to be as large as possible but

still below the coherence threshold.

An interesting extension of the above model is

obtained by assuming that UG is only very roughly

defined by our genes. Randomness during the

developmental process could give rise to variation in

neuronal patterns in the brain and consequently to

variation in UG. Hence it might be a reasonable

assumption that individuals have slightly different

UGs. Each individual could have a personal

‘universal’ grammar. An interesting question is how

similar these UGs have to be such that a population

achieves grammatical coherence. In this case, there is

again selection for maintaining a large search space of

candidate grammars, as the target grammar should

be contained in each of the UGs.

Conclusions

In summary, we have outlined how populations can

evolve coherent communication, both in terms of

lexical items and grammatical rules. We have

described how arbitrary signals become associated

with specific referents and have shown how natural

selection can lead to the ‘duality of patterning’ of

human language: words are sequences of phonemes,

sentences are sequences of words. Finally, we have

formulated a mathematical theory for the

population dynamics of grammar acquisition. The

key result here is a ‘coherence threshold’ that

relates the maximum complexity of the search space

to the amount of linguistic input available to the

child and the performance of the learning

procedure. The coherence threshold represents an

evolutionary stability condition for the language

acquisition device: only a universal grammar that

operates above the coherence threshold can 

induce and maintain coherent communication 

in a population.

Opinion
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