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Abstract

In the traditional approach to evolutionary game theory, the individuals of a population meet each other at random, and they have no

control over the frequency or duration of interactions. Here we remove these simplifying assumptions. We introduce a new model, where

individuals differ in the rate at which they seek new interactions. Once a link between two individuals has formed, the productivity of this

link is evaluated. Links can be broken off at different rates. In a limiting case, the linking dynamics introduces a simple transformation of

the payoff matrix. We outline conditions for evolutionary stability. As a specific example, we study the interaction between cooperators

and defectors. We find a simple relationship that characterizes those linking dynamics which allow natural selection to favour

cooperation over defection.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Game theoretic ideas were first introduced to biology by
Hamilton (1964) and Trivers (1971), but the field of
evolutionary game theory was founded by Maynard Smith
and Price (1973) and Maynard Smith (1982). The
mathematical foundation of evolutionary game dynamics
is the replicator equation (Taylor and Jonker, 1978;
Hofbauer et al., 1979; Zeeman, 1980), which is a system
of ordinary differential equations describing how the
relative abundances (frequencies) of strategies change over
time as a consequence of frequency-dependent selection.
The payoff from the game is interpreted as biological
fitness. Individuals reproduce proportional to their fitness.
The expected payoff of an individual is a linear function of
the frequencies of all strategies; the coefficients of this
function are the entries of the payoff matrix. For detailed
reviews of the replicator equation and other approaches to
e front matter r 2006 Elsevier Ltd. All rights reserved.
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o de Fı́sica Teórica e Computacional, P-1649-003 Lisboa

l. Tel.: +351217904891; fax: +351217954288.

ess: pacheco@cii.fc.ul.pt (J.M. Pacheco).
evolutionary game dynamics, see Fudenberg and Tirole
(1991), Weibull (1995), Samuelson (1997), Cressman
(2003), Hofbauer and Sigmund (1998, 2003), Gintis
(2000) and Nowak and Sigmund (2004).
A typical assumption of evolutionary game dynamics is

that individuals meet each other at random either in
infinitely large, well-mixed populations (which is the
standard approach), in finite populations (Nowak et al.,
2004; Imhof and Nowak, 2006; Taylor et al., 2004;
Fudenberg et al., 2006; Traulsen et al., 2006a, b), in spatially
extended systems (Nowak and May, 1992; Nakamaru et al.,
1998; Killingback and Doebeli, 1996; van Baalen and Rand,
1998; Irwin and Taylor, 2001; Hauert and Doebeli, 2004; Ifti
et al., 2004; Nakamaru and Iwasa, 2005; Jansen and van
Baalen, 2006) or on graphs (Lieberman et al., 2005; Santos
and Pacheco, 2005; Santos et al., 2005, 2006a, b; Ohtsuki
et al., 2006). Taylor and Nowak (2006) analyze a scenario
where the interaction rate does depend on the strategies. In
all these cases, however, individuals cannot influence how
often they will interact and how long particular interactions
will last. On the other hand, other studies have explored the
possibility of individuals meeting assortatively, by means
of selective partner choice (Eshel and Cavalli-Sforza, 1982;
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Noë and Hammerstein, 1994; Skyrms and Pemantle, 2000;
Bala and Goyal, 2001; Ebel and Bornholdt, 2002; Eguiluz
et al., 2005; Biely et al., 2005) or by means of volunteering
participation (Peck and Feldman, 1986; Hauert et al., 2002;
Szabó and Hauert, 2002; Hauert and Szabó, 2003; Aktipis,
2004).

Let us therefore consider a simple model where the
members of a population seek new interactions at different
rates. Moreover, established interactions last for different
amounts of time. The basic idea is that interactions which
benefit both partners are more durable than interactions
where one partner is exploited by the other. Also the
optimum rate at which new interaction partners are
being sought may differ for the different strategies of an
evolutionary game.

In Section 2, we introduce the basic model, together with
numerical examples. In Section 3 we analyze the evolu-
tionary dynamics adopting, as a particular example, the
favourite game in town: the competition between coopera-
tors and defectors. Section 4 offers conclusions. Different
limits associated with variable selection pressures and
population sizes are discussed in the appendix.
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Fig. 1. Left panels: results of active linking dynamics for a population size

of N ¼ 40 individuals. A-players are located in the ‘‘inner-circle’’, and are

represented by blue circles. Links between A-players are drawn with solid

cyan lines. B-players are represented by red-circles on the outer rim, and

BB-links are drawn with solid grey lines. AB-links are drawn with solid red

lines. Three different steady-state scenarios are shown, corresponding to

different number of NA players: NA ¼ 10 (top), NA ¼ 20 (middle), and

NA ¼ 30 (bottom). The resulting plots provide a snapshot of a

configuration after each graph has attained a steady-state condition. We

started from complete graphs, links being created and destroyed at rates

determined by the following parameter choice: aD ¼ 0:4, bCC ¼ 0:2, bCD ¼

0:8 and bDD ¼ 0:3, which lead to aC � 0:56 by solving Eq. (9). The

fractions of active links become fCC � 0:61, fCD � 0:22 and fDD � 0:35,
respectively. Right panels: degree distributions associated with steady-state

configurations reached via active linking dynamics. Results shown

correspond to an average over 1000 steady-state configurations for each

value of NA. The red-spikes show the degree-distribution associated with

B-players only, the blue-spikes show the degree-distribution associated

with A-players only, whereas the grey spikes show the sum of the blue and

red distributions. As NA increases, the average connectivity associated

with A-players increases, as expected, the relative proportion of AA and

AB links being dictated by the parameter choice. For the parameters

quoted, and for a prisoner’s dilemma game with b ¼ 2 and c ¼ 1

(cf. Eq. (6)), the rescaled payoff matrix reads a0 ¼ 0:60; b0 ¼ �0:22;
c0 ¼ 0:44; d 0 ¼ 0. In other words, active linking dynamics changes the

game from a prisoner’s dilemma into a coordination game which favours

cooperation whenever NA=N458%.
2. The basic model of linking dynamics

Consider a game between two strategies, A and B. The
total population size is constant and given by N. There are
NA individuals who use strategy A and NB individuals who
use strategy B. We have N ¼ NA þNB.

An interaction between two players occurs if there is a
link between these players. Links are formed at certain
rates and have specific life-times. Denote by X ðtÞ the
number of AA links at time t. Similarly, Y ðtÞ and ZðtÞ

denote the number of AB and BB links at time t. The
maximum possible number of AA, AB and BB links is
respectively given by

X m ¼ NAðNA � 1Þ=2,

Y m ¼ NANB,

Zm ¼ NBðNB � 1Þ=2.

Suppose A and B players have a propensity to form new
links denoted by aA and aB, such that AA links are formed
at a rate a2A, AB links are formed at a rate aAaB and BB

links are formed at a rate a2B. The death rates of AA, AB

and BB links are given by bAA, bAB and bBB, respectively.
Thus, the average life-times of links are given by
tAA ¼ 1=bAA, tAB ¼ 1=bAB and tBB ¼ 1=bBB.

Linking dynamics can be described by a system of three
ordinary differential equations for the number of links

_X ¼ a2AðX m � X Þ � bAAX ,

_Y ¼ aAaBðY m � Y Þ � bABY ,

_Z ¼ a2BðZm � ZÞ � bBBZ.
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In the steady state, the number of links of the three
different types is given by

X � ¼ X m

a2A
a2A þ bAA

,

Y � ¼ Y m

aAaB

aAaB þ bAB

,

Z� ¼ Zm
a2B

a2B þ bBB

.

The fractions of active links in the steady state are given by

fAA ¼
a2A

a2A þ bAA

,

fAB ¼
aAaB

aAaB þ bAB

,

fBB ¼
a2B

a2B þ bBB

.

Examples of population structures attained under steady-
state dynamics for three different combinations of
(NA;NB) are shown in Fig. 1.

Let us now consider a game between A and B given by
the payoff matrix

A

B

A B

a b

c d

� �

where we assume that entries are positive. At the steady
state of the linking dynamics, the average fitness of A and B

individuals is respectively given by

f A ¼ f 0 þ afAAðNA � 1Þ þ bfABNB (1)

and

f B ¼ f 0 þ cfABNA þ dfBBðNB � 1Þ. (2)

Here f 0 denotes the baseline fitness that is independent
of the game under consideration. Eqs. (1) and (2) suggest
that the linking dynamics introduces a simple transforma-
tion of the payoff matrix. We can study standard
evolutionary game dynamics using the modified payoff
matrix

A

B

A B

afAA bfAB

cfAB dfBB

 !
¼ A

B

A B

a0 b0

c0 d 0

 !
(3)

3. Evolutionary dynamics

Let us now study how the frequencies of strategies A and
B change under evolutionary dynamics. We assume that
the linking dynamics occurs on a fast time scale (ta). On a
slower time scale (te), evolutionary updating occurs.
Reproduction can be genetic or cultural. When ta5te,
the steady state of the linking dynamics determines the
average payoff and fitness of individuals. Moreover, since
we are dealing with a finite population size, we may
consider different update processes, such as a frequency-
dependent Moran process (Nowak et al., 2004; Taylor et
al., 2004) or a frequency-dependent Wright–Fisher process
(Imhof and Nowak, 2006) (see also the appendix). In the
first case, at each time step, an individual is chosen for
reproduction proportional to fitness; the offspring replaces
a randomly chosen neighbour. In the second case, each
individual produces a number of offspring proportional to
fitness; the next generation is sampled from this pool of
offspring. In both cases, the total population size is
constant and given by N. We can calculate the fixation
probabilities of strategies A and B. Let rA denote the
probability that a single A player introduced into a
population of B players will generate a lineage that takes
over the entire population. For neutral selection,
a ¼ b ¼ c ¼ d, we have rA ¼ rB ¼ 1=N. In the limit of
weak selection (large baseline fitness, f 0) we find that
rA41=N if

a0 þ 2b04c0 þ 2d 0. (4)

This condition valid for Nb1 is known as the 1=3-rule
(Nowak et al., 2004; Imhof and Nowak, 2006); if the fitness
of A is greater than the fitness of B at a frequency of xA ¼

1
3

then the fixation probability of A is greater than 1=N. This
relationship also holds for modified stochastic processes
that use pairwise comparison rules for updating (see
Traulsen et al., 2006a and Appendix) and for games on
graphs (Ohtsuki and Nowak, 2006a, b).
Let us introduce the quantity

w ¼ a0 þ 2b0 � c0 � 2d 0 ¼ afAA þ ð2b� cÞfAB � 2dfBB.

(5)

If w40 then condition (4) is fulfilled and a single mutant is
advantageous, that is, rA41=N for weak selection. In
terms of the a and b parameters describing the birth and
death rates of links, we obtain

w ¼ a
a2A

a2A þ bAA

þ ð2b� cÞ
aAaB

aAaB þ bAB

� 2d
a2B

a2B þ bBB

.

For non-negative payoff values we observe that w is always
a decreasing function of bAA and an increasing function of
bBB. For maximizing the evolutionary success of strategy A

it is best that AA links are long-lived and BB links are
short-lived. If 2b4c then w is a decreasing function of bAB,
which means long-lived AB links favour A. If 2boc

then short-lived AB links favour A. It is possible to find
payoff values, where w exhibits an intermediate extremum
(maximum or minimum) as function of aA or aB. This
leads to the interesting situation where the chances of A

are maximized at intermediate rates of forming new links
(see below).
For large, well-mixed populations (see appendix), the

relative ordering of the payoff-matrix elements is important
in determining the dynamical behaviour of the system.
Whenever c4a4d4b the system evolves into the absorbing
state characterized by 100% B-players. For c4a4b4d the
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system exhibits an interior stable fixed-point at a fraction
of A-players given by NA=N � ðb� dÞ=ðbþ c� a� dÞ,
whereas this point becomes an unstable fixed point
whenever a4c4b4d. The rescaling of the payoff matrix
induced by active linking dynamics may lead to a radically
different dynamical evolution of the system, since it acts to
change the ranking of the elements in the payoff matrix, and
hence the effective nature of the game under study.

3.1. Evolution of cooperation

As a specific example, we want to investigate the
interaction between cooperators and defectors (Axelrod
and Hamilton, 1981; Nowak and Sigmund, 1992, 1993). A
cooperator, C, pays a cost c for every link, and the partner
of this link receives a benefit b. Defectors, D, pay no cost
and distribute no benefits. We assume b4c otherwise
cooperation has no net benefit. Therefore, the payoff
matrix becomes

A

B

A B

a b

c d

� �
! C

D

C D

b� c �c

b 0

� �
(6)

Cooperators and defectors seek to establish links at rates
aC and aD, respectively. The death rates of links are given
by bCC , bCD and bDD. From Eq. (5) we have

w ¼ ðb� cÞfCC � ðbþ 2cÞfCD.

If w40 then the fixation probability of a cooperator, rC , is
greater than 1=N. The condition w40 can be written as

b

c
41þ 3

fCD

fCC � fCD

. (7)

If the frequency of CC links exceeds the frequency of CD

links, cooperators can be favoured given that the benefit to
cost ratio fulfills inequality (7). We can also introduce a
parameter, s40, which quantifies how much more frequent
CC links are compared to CD links. Let

fCC ¼ fCDð1þ sÞ.

We obtain the simple relationship

b

c
41þ

3

s
.

In terms of the birth and death rates of links, the crucial
condition becomes

b

c
41þ 3

aDða2C þ bCCÞ

aCbCD � aDbCC

. (8)

The critical benefit-to-cost ratio is a decreasing function of
bCD and an increasing function of aD and bCC . Obviously,
the evolution of cooperation is easier if CC links are long-
lived while CD links are short-lived. Furthermore, if
defectors are slow to form new links, then cooperators
have better chances. More interestingly, the critical benefit-
to-cost ratio assumes a minimum value for an intermediate
value of aC . Thus, there is an optimum rate at which
cooperators should try to establish new links. This
optimum is given by

âC ¼ aD

bCC

bCD

1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

b2CD

a2DbCC

s !
. (9)

We note that inequality (8) also implies that the fixation
probability of defectors, rD, is less than 1=N and that a
single defector in a large population of cooperators has a
lower fitness than the resident cooperators. Thus, inequal-
ity (8) is the crucial condition for ‘active linking’ to
facilitate the natural selection of cooperation. For the
parameters used in connection with Fig. 1 (note that aC

was obtained from Eq. (9)), and for a prisoner’s dilemma
game in which b ¼ 2 and c ¼ 1, the primed payoff matrix
leads to a coordination game favouring cooperation
whenever NA=N460% (cf. Fig. 1). Hence, fast active
linking dynamics paves the way for cooperation to thrive.
Up to now, we have assumed that the parameters a and b

remain constant throughout evolution.
Here, we discuss the case that also these parameters are

under selection. If different cooperators have different
values of aC and bCC , those that have the longest
interactions with other cooperators will be most successful
and selection decreases bCC . On the other hand, successful
cooperators end their interaction with defectors fast,
leading to selection for high values of bCD. Among the
defectors, selection will favour those that have small values
of bCD and a high propensity to form new links, i.e. high
aD.
A further possibility including such a selection mechan-

ism is to introduce a payoff-dependent active linking
dynamics. For instance, we may associate the propensity to
form new links, as well as the lifetime of different types of
links with the productivity of those links assessed in terms
of entries in the payoff-matrix. Here, we explore the case in
which cooperators and defectors share the same propensity
to form new links aC ¼ aD ¼ a, whereas the lifetimes of
different types of links are directly related to the average
profit expected from that link.
Assuming that

tAA ¼ ka,

tAB ¼
k
2
ðbþ cÞ,

tBB ¼ kd

then we may write, for the prisoner’s dilemma, tCC ¼ 2tCD

and tDD ¼ 0, as a result of the entries in the payoff matrix.
Eq. (8) now reads

b

c
44þ 6a2tCD.

Clearly, the larger the lifetime of the non-assortative CD-
links, the more difficult it gets for cooperators to thrive
under active linking dynamics.
Note finally, that whenever fAA ¼ fAB ¼ fBB, then the

rescaling of the payoff matrix amounts to multiply all
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terms by a positive constant. Such a rescaling of the payoff
matrix will not change the nature of dilemma at stake, but
it might lead to a different intensity of selection, depending
on the update mechanism.

4. Conclusions

By equipping individuals with the capacity to control the
nature and duration of their interactions with others, we
introduce a linking dynamics which, in the limit when it
takes place faster than evolutionary dynamics, leads to a
simple transformation of the payoff matrix. The rescaling
may effectively lead to an evolutionary dynamics involving
a different type of game, now played in a finite, well-mixed
population. This equivalence allows one to utilize many of
the methods recently developed for finite, well-mixed
populations, employing them in this a priori more
complicated setting. In particular, one can write down
the conditions which ultimately allow natural selection to
favour cooperation over defection.
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Appendix A

A.1. The pairwise comparison rule, ta5te

Assuming ta5te, links will have time to readjust before
a new strategy update takes place. We shall adopt here the
pairwise comparison rule, which has been recently shown
to provide a unifying framework to discuss strategy
dynamics at all levels of selection, from weak selection to
imitation dynamics (Traulsen et al., 2006a). According to
this rule, two individuals from the population, A and B are
randomly chosen for update. The strategy of A will replace
that of B with a probability given by

p ¼
1

1þ e�bðf A�f BÞ
,

whereas the reverse will happen with probability 1� p. We
can calculate the fixation probabilities of strategies A and B.
Let rAðkÞ denote the probability that k A-players introduced
into a population of B-players will generate a lineage that
takes over the entire population. For the pairwise compar-
ison rule we find (Traulsen et al., 2006a)

rAðkÞ ¼
erf ½xk� � erf ½x0�
erf ½xN � � erf ½x0�

, (10)

where erfðxÞ ¼ ð2=
ffiffiffi
p
p
Þ
R x

0 dy e�y2 is the error function,
xk ¼

ffiffiffiffiffiffiffiffiffiffiffi
ðb=uÞ

p
ðkuþ vÞ, 2u ¼ a0 � b0 � c0 þ d 0 and 2v ¼ �a0
þb0N � c0N þ c0, which simplifies to

rAðkÞ ¼
e�2bvk � 1

e�2bvN � 1

whenever u ¼ 0. The quantity b, which in physics corre-
sponds to an inverse temperature, here controls the intensity
of selection, namely, b!1 leads to cultural update via
imitation dynamics, whereas in the limit b51 one recovers
the weak selection limit of the frequency-dependent Moran
process (Nowak et al., 2004) discussed below.

A.2. Large population size, ta5te

Given that the number of A-players in the population is
k, one instance of the pairwise comparison process
introduced above leads to either the maintenance of the
total fraction k=N on the population, its increase to
ðk þ 1Þ=N or its decrease to ðk � 1Þ=N. The transition
probabilities can be written as (Traulsen et al., 2006a)

T�ðkÞ ¼
k

N

N � k

N

1

1þ e�bðf AðkÞ�f BðkÞÞ
.

When the population size N is large, this process can be
approximated by a Langevin equation for the fraction x ¼

k=N of A players in the population (Traulsen et al., 2005)

_x ¼ aðxÞ þ bðxÞz, (11)

with a drift term aðxÞ ¼ TþðkÞ � T�ðkÞ, a diffusion term
bðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTþðkÞ þ T�ðkÞÞ=N

p
and where z is uncorrelated

Gaussian noise with unit variance. Since, for the pairwise
comparison rule, and for large N,

aðxÞ ¼ xð1� xÞ tanh
b
2
½f AðxÞ � f BðxÞ�

� �

and

bðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

N

r

we obtain the following differential equation describing the
evolution of the fraction of A-players under active linking
dynamics at all levels of selection intensity

_x ¼ xð1� xÞ tanh
b
2
½f AðxÞ � f BðxÞ�

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð1� xÞ

N

r
z.
A.3. Infinite population size and weak selection, ta5te

When N !1, the second term in Eq. (11) vanishes as
1=

ffiffiffiffiffi
N
p

. On the other hand, for weak selection (b51)
tanhðxÞ ¼ xþOðx3Þ and we encounter again the replicator
dynamics of infinite, well-mixed populations

_x ¼
b
2

xð1� xÞðf AðxÞ � f BðxÞÞ

except for a rescaling of time which, intuitively, scales with
the intensity of selection b. Notice, however, that now the
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payoffs are to be evaluated with the rescaled payoff matrix
resulting from the active linking dynamics introduced here.

A.4. The limit tabte

Whenever tabte the active linking plays no role, and
strategy evolution will proceed on a static graph. In other
words, the graph topology at the start of the evolutionary
process, together with the initial number of A-players will
ultimately dictate the most likely fate of evolution.
Assuming we start from a well-mixed population of size
N (complete graph), in which we have k A-players at start,
Eq. (10) provides us with the exact expression for the
fixation probability of strategy A. Notice, however, that
unlike the previous limit, now the coefficients are to be
computed making use of the original (unprimed) payoff
matrix elements.

In the limit of weak selection, we recover again the 1
3
rule

for the original (unprimed) payoff matrix. Whenever the
starting graph is not complete, there is little we can say for
arbitrary intensity of selection. However, for weak selec-
tion and large population sizes, the following limit applies.

A.5. Infinite population size and weak selection tabte

In the limit of infinite population and weak selection,
describable by a graph in which, on average, every vertex
has K links, the strategy dynamics will again converge to a
replicator-like equation with an additional term reflecting
the local structure of the population (Ohtsuki and Nowak,
2006b)

_x ¼ xðpAðxÞ þ gA � hpiÞ,

where, as usual, pAðxÞ¼axþ bð1� xÞ, pBðxÞ¼cxþ dð1� xÞ

and hpi ¼ xpAðxÞ þ ð1� xÞpBðxÞ. Note that the division by
the number of interaction partners changes the timescale
by a constant factor of K . The local competition terms gi

are given by gi ¼
P

jxjbij (i; j ¼ A;B), where the matrix bij

reads (for the pairwise comparison rule)

A

B

A B

0 Z

�Z 0

 !
;

with Z ¼ ðaþ b� c� dÞ=ðK � 2Þ (Ohtsuki and Nowak,
2006b). In other words, under weak selection strategy
evolution will depend on the graph topology: for large,
well-mixed populations the conventional replicator dy-
namics is expected to apply, whereas for graphs with an
average number of links per vertex K, a modified replicator
dynamics will dictate strategy evolution.
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