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Targeted cancer therapies offer renewed hope for an
eventual ‘cure for cancer’. At present, however, their
success is often compromised by the emergence of
resistant tumor cells. In many cancers, patients initially
respond to single therapy treatment but relapse within
months. Mathematical models of somatic evolution can
predict and explain patterns in the success or failure of
anticancer drugs. These models take into account the
rate of cell division and death, the mutation rate, the size
of the tumor, and the dynamics of tumor growth includ-
ing density limitations caused by geometric and meta-
bolic constraints. As more targeted therapies become
available, mathematical modeling will provide an essen-
tial tool to inform the design of combination therapies
that minimize the evolution of resistance.

Targeted cancer therapy
Targeted cancer therapies are drugs that interfere with
specific molecular structures implicated in tumor develop-
ment [1]. In contrast to chemotherapy, which acts by
killing both cancer cells as well as normal cells that divide
rapidly, targeted therapies are a much sharper instrument
and offer the prospect of more effective cancer treatment,
with fewer side effects. Most targeted therapies are either
small-molecule drugs that act on targets found inside the
cell (usually protein tyrosine kinases) or monoclonal anti-
bodies directed against tumor-specific proteins on the cell
surface [2].

The first drug that was rationally developed to block a
known oncogene was imatinib, a small-molecule drug that
effectively blocks the activity of the BCR-ABL kinase
protein in chronic myeloid leukemia (CML) [3]. The success
of imatinib for treating CML is striking: the response rate
to imatinib treatment is 90% compared with 35% that can
be achieved with conventional chemotherapy [4]. More-
over, most patients taking imatinib achieve complete cyto-
genetic remission and those who do have an overall
survival rate similar to the general population [5,6]. Un-
fortunately, many of the more recent targeted therapies
are not as successful over time. An example is the EGFR
tyrosine kinase inhibitor gefitinib, used to treat the 10% of
patients with non-small cell lung cancer (NSCLC) who
have EGFR-activating mutations. Patients taking gefitinib
have a higher response rate and longer progression-free
survival (75% and 11 months, respectively) compared with
those treated with standard chemotherapy (30% and 5
months); however, after 2 years, disease progresses in

more than 90% of patients who initially responded to
gefitinib treatment [7].

The failures of targeted therapies in patients who ini-
tially respond to treatment are usually due to acquired
resistance. This resistance is often caused by a single
genetic alteration in tumor cells, arising either before or
during treatment [8,9]. In the case of CML, several muta-
tions in the BCR-ABL kinase domain have been shown to
cause resistance to imatinib [10]. In the case of NSCLC, a
mutation in EGFR is observed in approximately 50% of
patients [11,12]. The mutation that confers resistance to
targeted therapy does not necessarily arise in the gene that
is targeted. For example, resistance to BRAF inhibitor
PLX4032 (vemurafinib), used in the treatment of melano-
mas, does not occur via mutations in the BRAF gene [13].

The current situation has interesting parallels to the
treatment of HIV with AZT (coincidentally, a failed cancer
drug) in the 1990s. AZT impedes HIV progression, but
during prolonged treatment the virus usually develops
resistance. It was only after the introduction of combina-
tion therapies with several HIV inhibitors that the disease
became controllable in most patients. The hope for cancer
is that similarly, as more targeted therapies become avail-
able, combination targeted therapies will be able to achieve
indefinite remission in most cancer patients. However, the
situation in cancer is more complicated than in HIV:
because every cancer is genetically unique, many targeted
therapies are needed for effective combination therapies to
be available for all cancers.

To understand why some targeted therapies succeed
while others ultimately fail, it is important to study the
evolutionary process by which resistance arises. Mathe-
matical evolutionary models have previously provided
great insight into the gradual escape of HIV from the
immune system [14–18] and the response of HIV to treat-
ment [19–21], and similar models can be applied to the
evolution of tumors.

Modeling the evolution of resistance to cancer therapy
Evolutionary modeling of cancer has a rich history dating
to the 1950s, when Nordling [22] and Armitage and Doll
[23,24] showed how patterns in the age incidence of cancer
could be explained by somatic evolutionary processes in-
volving multiple mutations. Mathematical evolutionary
models have elucidated important patterns in the genetic
and clinical progression of cancer [25–32] and its response
to treatment [33–36]. Attolini and Michor [37] provide a
comprehensive review of the history and development of
this field.
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Evolutionary modeling is particularly useful for under-
standing the emergence of acquired resistance to treat-
ment, either conventional chemotherapy or targeted
therapy (Table 1). Investigations of this question usually
model tumor growth and evolution as a branching
process – a stochastic process in which cells divide and
die at random. Mutations that confer resistance appear at
random during cell divisions. In most models, the tumor
and its clonal subpopulations (including those resistant to
treatment) grow exponentially on average. However, many
clones that arise subsequently disappear due to stochastic
drift – fluctuations caused by randomness in cell division
and death.

Goldie and Coldman [38–44] were the first to mathe-
matically investigate the evolution of resistance to cancer
therapy (chemotherapy, in their case). Specifically, they
calculated the probability that resistant cells exist in a
tumor that has grown exponentially to a certain size. One
assumption made in their models is that resistance muta-
tions are neutral (that is, they have no effect on fitness in
the absence of treatment). Later work by Iwasa et al. [36],
Haeno et al. [45], and Durrett and Moseley [46] relaxed
this assumption by including the possibility that resis-
tance mutations also confer a fitness advantage or dis-
advantage. A common feature of these investigations is
their focus on the question of whether resistant cells exist
in a tumor of detectable size. Although this is a valuable
question, it does not fully address whether treatment will
eradicate the tumor because resistant cells may disap-
pear during treatment due to stochastic drift, especially if
they are only present in small numbers when treatment
begins.

More recent work [47–49] has addressed the probability
that a treatment will eradicate a tumor, if a given number
of resistant cells are present at the start of treatment. In
these models, the number of sensitive cells declines expo-
nentially due to treatment. The number of resistant cells is
expected to grow exponentially on average, but they may
be eliminated due to stochastic drift. In these studies, the
probability of eradication was calculated in a variety of
situations, including cases in which multiple mutations are
required for resistance (e.g., when combination therapies

are used). The formulas derived there provide an impor-
tant component for calculating the overall probability of
tumor eradication.

Komarova and Wodarz [35,50] derived an overall for-
mula for the probability of tumor eradication in a fully
stochastic model. They considered a tumor cell population
that grows exponentially up to a certain size until treat-
ment begins. During treatment, the number of sensitive
cells declines exponentially, as in previous models. In their
model, resistance can arise either before or during treat-
ment. The authors calculated the probability of tumor
eradication, based on the size of the tumor at the start
of treatment and the rate at which resistance mutations
appear. They found that resistance is more likely to arise
during tumor growth rather than treatment. This effect is
magnified if resistance requires multiple mutations (e.g.,
in the case of several drugs). A limiting assumption in this
model is that tumors grow exponentially until treatment is
initiated. Although tumors are believed to initially grow
exponentially, their growth can slow as they expand, due to
nutrient shortages or geometric constraints [51–53]. Be-
cause of these restrictions, tumors often reach a steady
state, with little or no tumor growth until further muta-
tions arise [54–56].

Effects of density dependence on the evolution of
resistance
We present a method for quantifying the evolution of
resistance in tumors that grow subject to density limita-
tions. We assume that tumor growth is initially exponen-
tial, but this growth slows as the tumor size increases,
and the tumor eventually reaches a steady state. In this
steady state, density constraints prevent further growth,
unless new mutations arise that allow the tumor to
overcome these constraints. The key parameters of our
model are the number N of tumor cells at steady state; the
time T that the tumor remains at steady state before
treatment; the initial rates of division (r) and death (d) of
tumor cells; the rate u at which resistance mutations are
produced; and the division and death rates (r0 and d0,
respectively) of sensitive cells under treatment, in the
absence of density constraints.

Table 1. Models of the evolution of resistance to cancer therapy

Event of interest Model of tumor dynamicsa Refs

Resistant cells exist when tumor reaches detectable size Expon ential g rowth 

log X
t

[33,36,38,40,41,43,45]

Treatment fails due to resistance acquired during treatment

log X
t

Expon ential  dec ay [47,48]

Treatment fails due to resistance acquired before or during treatment

log X t

Expon ential g rowth , the n 
dec ay during trea tmen t 

[35,50]

Treatment fails due to resistance acquired before or during treatment

log X
t

Density -dependent g rowth , 
then dec ay during treatme nt

This work

aBlue curves show the dynamics of sensitive cells, whereas red curves show a possible (stochastic) trajectory of the resistant cell population. In some cases, resistant cells
may arise and subsequently disappear due to stochastic drift.
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Mathematically, this method is based on a density-
dependent branching process model of tumor growth. In
this model, tumor evolution starts with a single sensitive
cell. Sensitive cells divide at rate r/(1 + hX) and die at rate
d, where X is the current total number of cells in the tumor
and h = (r – d)/(Nd). From these formulas we can see that
tumor growth is initially exponential with rate r – d, but
that the division rate decreases as the tumor approaches
size N. The net growth rate, r/(1 + hX) – d, is positive for X
< N and negative for X > N, thus the tumor will remain at
approximately size N (steady state), with small fluctua-
tions, until treatment starts. At every division, one of the
daughter cells will, with probability u, receive a mutation
conferring resistance to treatment. We initially assume
that resistance mutations are selectively neutral before
treatment. After the tumor has been at steady state for
time T, treatment is initiated. We assume that treatment
affects only sensitive cells, reducing their division rate to r0/
(1 + hX) with r0 ! r, and increasing the death rate to d0 " d.
We assume that r0 < d0, so that the sensitive cell population
declines approximately exponentially during treatment
(otherwise the treatment is ineffective).

The dynamics of tumor size in this model can be ap-
proximately described by three phases: (i) expansion (up to
size N); (ii) steady state (for time T); and (iii) treatment
(Figure 1).

Resistance mutations can arise during any of the three
phases. However, the majority of resistance mutations will
die out shortly after being produced, due to stochastic drift.
For example, during the expansion and treatment phases,
new resistance mutations disappear with probability ap-
proximately d/r, and those resistance mutations that do
not survive drift have a median lifetime of log(2 – d/r)/(r – d)
days [57]. For the parameter values r = 0.25/day, d = 0.24/
day [31,54], only one out of every 25 resistance mutations
survives stochastic drift, and the majority disappear with-
in 5 days. Even resistant clones that grow to 20 cells still
have a 44% [=(d/r)20] chance of disappearing due to drift.
Resistance mutations arising during steady state have
even slimmer chances: such a mutation has probability
1/(1 + dt) of surviving for t days after being produced. This
probability decreases to zero as t increases.

Treatment will eradicate the tumor as long as no resis-
tance mutations survive long enough to cause treatment
failure. Considering that resistance mutations can arise
during any phase, we write the overall probability P of
tumor eradication as:

P ¼ P1P2P3:

Here P1, P2, and P3 are the probabilities that no resis-
tance mutations leading to treatment failure arise during
expansion, steady state, and treatment, respectively.

P1, the probability that no resistance mutation leading
to treatment failure arises during expansion, is calculated
in the supplementary material as:

P1 ¼ exp $Nu
1 $ j

d=r $ j
log

1 $ j

1 $ d=r

! "! "
;

j ¼ dðr $ dÞT þ d
dðr $ dÞT þ r

:

P2, the probability that no resistance mutation leading
to treatment failure arises during steady state, is also
calculated in the supplementary material as:

P2 ¼ 1 þ d
r
ðr $ dÞT

! "$Nu

:

P3, the probability that no resistance mutation leading
to treatment failure arises during treatment, was calcu-
lated in previous work [47–49]:

P3 ¼ exp $Nu
r $ d
r

r0

d0 $ r0

! "
:

The accuracy of our formula for the probability of tumor
eradication, using the above expressions for P1, P2, and P3,
is verified by simulations in the supplementary material
(Figure S1).

The formulas above apply to the case that resistance
mutations are selectively neutral. In the supplementary
material, we also consider resistance mutations that carry
a fitness cost, so that resistant cells divide at a reduced rate
r̂=ð1 þ hXÞ, with r̂ < r. The analysis is similar in this case,
but the formulas for P1, P2, and P3 are more complicated.

These formulas allow us to compare the relative impor-
tance of the three phases to the overall probability of
eradication (Figure 2). Suppose, for example, that a tumor
remains in steady state for a long period of time (T ! 1). In
this case, if resistance mutations are neutral (before treat-
ment), P1 increases to 1 and P2 decreases to zero, while P3

remains constant. Thus, treatment failure is probable in
this case, due to resistance acquired during steady state.
The outcome is similar if resistance mutations are costly,
except that P2 decreases not to zero but to an intermediate
value:

P2 !
r $ d
r̂ $ d

! "$Nur=r̂

:

In the opposite scenario, if treatment begins while the
tumor is expanding (i.e., T = 0 and there is no steady state),
our method reproduces results obtained by Komarova and
Wodarz [35] using their biphasic (expansion then treat-
ment) model. Their results (and ours) indicate that ac-
quired resistance leading to treatment failure is more

Expansion Steady state

Time

T
um

or
 s

iz
e

Treatment
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Figure 1. Density-dependent model of the evolution of acquired resistance.
Sensitive cells (blue) initially grow exponentially, but this growth slows due to
density constraints. Resistant cells (red) arise through mutation. When treatment
begins the sensitive cells decline, leaving room for resistant cells to grow.
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likely to arise during expansion than during treatment (in
symbols, P3 > P1). This is true as long as the decline of
sensitive tumor cells during treatment is faster than their
growth during the expansion phase – a reasonable assump-
tion for most targeted cancer therapies.

A common feature of all our results is that the probabil-
ity of tumor eradication can be expressed as M!Nu, where
M is a positive quantity that depends on T, r, r0, and d, but
not on N or u. From this insight, we reason that (a) for Nu
" 1, tumor eradication is almost certain; (b) for Nu # 1,
treatment failure is almost certain; and (c) in between
these two regimes, the probability of eradication declines
sharply as Nu increases. A useful rule of thumb is that
doubling the value of Nu has the effect of squaring the
probability of treatment success. (For example, a 60%
success probability would become 36% if Nu were doubled.)
This exponential dependence on the product of tumor size
and mutation rate was first noticed by Goldie and Coldman
[38], who considered only the more limited question of
whether resistant cells exist after a tumor grows exponen-
tially up to a certain size. Our findings extend this principle
to the entire process of density-dependent tumor growth
and treatment.

In Table 2 we show numerical results for the probability
of treatment success as a function of the number of cells at
steady state, N, and time spent there, T. These results
illustrate points (a), (b), and (c) above. Additionally, they
show that when N and 1/u are of similar orders of magni-
tude, the time spent at steady state has a significant
effect on probability of treatment success. For example,

when N = 109 (which corresponds to a tumor of approxi-
mately 1 cm3) and resistance mutations arise at rate u =
10–9, waiting to treat for a year after the tumor reaches the
carrying capacity decreases the probability of treatment
success from 36% to 14%. Waiting for 9 more years further
decreases this chance to only 2%. This result reveals that
treatment success depends critically not only on the size of
the tumor but also its age, underscoring the importance of
early detection and treatment.

Another important question is how long the treatment
should last in order to eradicate all sensitive cells in the
tumor. In the supplementary material we calculate the
time until there is probability p that all sensitive cells have
been eradicated:

t ¼ 1

d0 ! r0
log

!d0 þ r0 p1=N

!d0 þ d0 p1=N

! "
:

For example, in a tumor with N = 109 cells, using
parameter values r0 = 0.22, d0 = 0.24, it will take 3.1 years
of treatment to achieve a 99% probability that all sensitive
cells have been eradicated. If treatment effectiveness is
increased so that r0 = 0.1, d0 = 0.24, it will only take 0.5
years to achieve a 99% probability of eradication of sensi-
tive cells. We caution, however, that eradication may
take significantly longer if there are latent tumor cells
unaffected by treatment.

Applications and extensions
We believe our model may be useful in understanding
resistance to many targeted therapies, and provides an
important correction to models that assume exponential
growth. The parameter values, including the division rate,
death rate, rate of resistance mutation, and tumor size at
steady state, may vary significantly among different types
of cancer. Additionally, it may be appropriate to vary the
functional form of the density limitation depending on the
type of cancer (e.g., density limitations may apply differ-
ently in liquid versus solid tumors). However, our results
remain applicable to other forms of density dependence as
long as the three-phase approximation (exponential
growth, steady state, treatment) is reasonably accurate.

Another important consideration in applying our model
to different treatments is that some tumor cells may be
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Figure 2. Treatment failure due to resistance acquired during three phases of
tumor dynamics. Top: sample growth trajectories of three tumors, which spend
different amounts of time at steady state (N = 109) before treatment. Bottom:
probabilities of treatment failure due to resistance acquired during each of the
three phases, and overall probability of treatment success, for these three
trajectories. As more time is spent in steady state, treatment failure becomes
increasingly probable, due to resistance acquired during this phase.

Table 2. The probability of treatment success, depending on
tumor size and time spent at steady statea

T = 0 T = 1 year T = 10 years

Neutral

N = 107 0.990 0.981 0.964

N = 108 0.902 0.822 0.690

N = 109 0.357 0.140 0.024

N = 1010 0.0 0.0 0.0

Deleterious

N = 107 0.992 0.987 0.986

N = 108 0.925 0.881 0.867

N = 109 0.459 0.283 0.241

N = 1010 0.0 0.0 0.0
aParameter values: r = 0.25, r0 = 0.1, d = d0= 0.24, u = 10!9. A deleterious resistant
cell has a fitness disadvantage of 1% before treatment compared with sensitive
cells (r̂ = 0.99 r).
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incapable of regrowing a tumor, even if they carry a resis-
tance mutation. This situation can be addressed by consid-
ering an ‘effective population size’ – equal to the number of
cells that could seed or regrow a tumor – in place of the
actual number of cells.

We note that many of our results can also be applied to
the evolution of resistance to conventional chemotherapy.
However, failures of chemotherapy are often due to factors
other than acquired resistance, such as toxicity to the
patient.

The quantitative predictions of our model are empiri-
cally testable. For instance, our model predicts a negative
exponential relationship between the number of tumor
cells and the probability of tumor eradication. This can
be tested using data on treatment success rates for differ-
ent tumor sizes. If, in addition, the tumor age [32], resis-
tance mutation rate, and other parameters can be
estimated, the formulas we present for tumor eradication
probabilities can be tested directly.

Concluding remarks and future perspectives
Mathematical modeling is an important tool for under-
standing the failure of targeted cancer therapies due to
acquired resistance. Previous research on this question has
focused mostly on resistance arising either during expo-
nential tumor growth or during treatment. We show that
phases of slow or no tumor growth are also clinically
important in that they present an opportunity for resis-
tance mutations to arise, thereby decreasing the chance of
treatment success. Future models might incorporate more
complex tumor dynamics, including different forms of den-
sity dependence [51,52] and/or alternating phases of
growth and stasis.

As in the case of HIV, successful treatment of
most cancers will probably require combination targeted
therapy [58–61]. As more and more targeted therapies
become available, the major challenge will be formulat-
ing effective combination therapies that minimize both
the likelihood of resistance and toxicity to the patient.
Mathematical models can help predict the success of
potential combination therapies in advance of clinical
trials.

Appendix A. Supplementary material
Supplementary material associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/j.
molmed.2012.04.006.
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1 Model of tumor growth and evolution of

resistance

Here we present a mathematical model for the evolution of resistance to
target cancer therapy in tumors with density-dependent growth. Our model
is a two-type density dependent branching process. (See Athreya and Ney
[S1] for background on branching processes.)

We consider two cancer cell types: sensitive and resistant. The numbers
of sensitive and resistant cells present at any given time t are represented
by the random variables Xs(t) and Xr(t), respectively. The total number of
cells is denoted X(t) = Xs(t) +Xr(t).
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We initially suppose that, prior to treatment, sensitive and resistant cells
have the same division and death rates. (We will relax this assumption in
Section 5 to include the possibility that resistance comes with an associated
fitness cost.) Each cell divides stochastically at rate r/(1 + ηX) per unit
time, where the constant η quantifies the extent of density dependence. Cell
death also occurs stochastically, at rate d per cell.

From these division and death rates, we calculate the that the tumor
has an overall carrying capacity of N = η−1(r/d − 1) cells. At carrying
capacity, the expected size of the tumor remains constant, though stochastic
fluctuations will occur.

We suppose that the tumor is initiated by a single sensitive cell. Mutation
from sensitive to resistant type occurs at rate u, so that with each division
of a sensitive cell, there is probability u that one of the daughter cells will
be resistant. We disregard the possibility of back-mutation from resistant to
sensitive cells.

When treatment begins, the division rate of sensitive cells is reduced to
r�/(1 + ηX) with r� ≤ r, and their death rate is increased to d� ≥ d, with
r� < d�. The resistant cells are unaffected by treatment.

2 Three-phase approximation

To mathematically analyze this model, we approximate the process of tumor
growth, evolution, and treatment by three phases:

• Expansion: The tumor grows exponentially. Both types divide at rate
r and die at rate d. This phase lasts until the tumor reaches its carrying
capacity N .

• Steady state: The tumor has reached carrying capacity. The division
and death rates of both types are equal to d. The tumor is in steady
state for time T .

• Treatment: When treatment is occurring, sensitive types have division
rate r� and death rate d�, while resistant types have birth rate r and
death rate d.

We approximate each of these phases as a density-independent branching
process, with different birth and death rates for each phase, as described
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above. This allows us to use established results in calculating the probability
of treatment success. This three-phase scheme is an approximation to the
model, because it does not include the transitions between the first and sec-
ond or second and third phases. During these transitions, the tumor is near
but not at carrying capacity, and thus the birth rates take on intermediate
values between r and d.

We now investigate these three phases in further detail, highlighting pre-
vious results that we will use in our analysis.

2.1 Expansion

For our density-independent branching process approximation to the expan-
sion phase, Iwasa et al. [S2] derived the following generating function for the
number of resistant cells at the termination of this process:

G1(ξ) ≡ E
�
ξXr

�
= exp

�
−Nu

1− ξ

d/r − ξ
log

�
1− ξ

1− d/r

��
. (S1)

2.2 Steady state

In our approximation of the steady state phase, the branching process is
critical with birth rate d (or r in the alternate convention). The generating
function for such a branching process is [S1]:

G2(ξ, t) ≡ E
�
ξXr(t)

�
=

dt(1− ξ) + ξ

dt(1− ξ) + 1
, (S2)

In the alternate convention in which density dependence affects death, d
is replaced by r in the above expression for G2(ξ, t).

2.3 Treatment

According to our approximation of the treatment phase, each resistant lineage
which is present at the beginning of the treatment phase will go extinct during
treatment with probability d/r. Thus if there are x resistant cells present at
the start of treatment, then the probability that all the lineages of these cells
will go extinct during treatment is (d/r)x.

If no resistant cells are present when treatment starts, the probability that
resistant cells will arise during and survive through treatment was calculated
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by Michor et al. [S3], using a model that coincides with our approximation
to the treatment phase. This probability is given by

P3 = exp

�
−Nu

r − d

r

r�

d� − r�

�
. (S3)

3 Analytical calculation of treatment success

probability

We are interested in the probability of treatment success. This is equiva-
lent to the probability that no ultimately successful lineages of resistant cells
arise—where “ultimately successful” means that the lineage survives through
the entire process, including treatment. Since resistant cells can arise dur-
ing any of the three phases, we express the overall probability of treatment
success as

P = P1P2P3, (S4)

where P1, P2 and P3 represent the probabilities that no ultimately successful
lineages of resistant cells arise during the expansion, steady state, and treat-
ment phases, respectively. P3 is given by (S3). We calculate P1 and P2 in
the following subsections.

3.1 Lineages arising during expansion

To calculate P1, we first consider a single resistant lineage that is present
at the start of the steady state phase. The number of cells present in this
lineage at the end of steady state is the random variable Xr(T ), which has
generating function G2(ξ, T ) = E

�
ξXr(T )

�
. For a particular value of Xr(T ),

the lineage will be extinct by the end of the treatment phase with probability
(d/r)Xr(T ) (see Section 2.3). So overall, the probability that the lineage is
extinct by the end of treatment phase is

E
�
(d/r)Xr(T )

�
= G2(d/r, T ) =

dT (r − d) + d

dT (r − d) + r
.

To find the probability that no lineages arising in stationary phase survive
through treatment phase, we plug this value into the generating function
G1—defined in (S1)—corresponding to the expansion phase:

P1 = G1

�
G2(d/r, T )

�
. (S5)
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3.2 Lineages arising during steady state

To calulate P2, we consider a single lineage that arises at time t0 < T . By
the reasoning used in the previous section, the probability that this lineage
is extinct by the end of treatment phase can be expressed as

G2(d/r, T − t0) = E
�
(d/r)Xr(T−t0)

�
=

d(T − t0)(r − d) + d

d(T − t0)(r − d) + r
.

Since new resistant lineages arise at rate dNu, the probability that an
ultimately successful lineage arises during the time interval [t, t+ dt) is

dNu

�
1− d(T − t)(r − d) + d

d(T − t)(r − d) + r

�
dt.

Thus the probability that no ultimately successful lineage arises during steady
state can be obtained as

P3 =exp

�
−
� T

0

dNu

�
1− d(T − t)(r − d) + d

d(T − t)(r − d) + r

�
dt

�

=

�
1 +

d

r
(r − d)T

�−Nu

.

(S6)

3.3 Overall probability of treatment success

Combining (S4), (S3), (S5), and (S6), we obtain the overall probability of
treatment success as

P =P1P2P3

=G1

�
G2(d/r, T )

�
×

�
1 +

d

r
(r − d)T

�−Nu

× exp

�
−Nu

r − d

r

r�

d� − r�

�
.

(S7)

We note that, as stated in the main text, P1, P2 and P3—and therefore
the overall probability P—can all be expressed in the form M−Nu, where M
does not depend on N or u. The same is true in the case that resistance
mutations carry a fitness cost (Section 5).
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4 Limiting cases

4.1 The case T = 0

T = 0 represents the case that treatment begins while the tumor is still
growing exponentially. In this case, N represents the number of tumor cells
present at the start of treatment, rather than the carrying capacity. This case
was analyzed by Komarova and Wodarz [S4,S5], and the results we present
here coincide with theirs.

For T = 0, we calculate

P1 = G1

�
G2(d/r, 0)

�
= lim

ξ→d/r
G1(ξ) = e−Nu.

P2 is clearly equal to 1 for T = 0 (that is, since the steady state phase is
bypassed in the case T = 0, resistant lineages cannot arise during steady
state). The overall probability P of resistance in the case T = 0 is equal to

P = P1P3 = exp

�
−Nu

�
1 +

r − d

r

r�

d� − r�

��
.

We note that if the condition

r�

r

r − d

d� − r�
< 1

is satisfied, then resistance leading to treatment failure is more likely to arise
during growth than during treatment (P1 < P3). Since r� ≤ r, the condition
d�−r� > r−d (that is, the decline of sensitive cells during treatment is faster
than their growth during expansion) is sufficient to imply P1 < P3.

4.2 The limit T → ∞
4.2.1 Resistance arising during growth

As T → ∞, G2(d/r, T ) → 1, and hence P1 = G1

�
G2(d/r, T )

�
→ G1(1) = 1.

This expresses the fact that, as time spent in steady state goes to infinity,
the probability that a resistant lineage will arise during growth and survive
through treatment goes to zero.
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4.2.2 Resistance arising during steady state

For the probability that no resistant types arise during steady state and
survive through treatment, we have:

lim
T→∞

P2 = lim
T→∞

�
1 +

d

r
(r − d)T

�−Nu

= 0.

Thus the overall treatment success probability P = P1P2P3 also goes to zero
as T → ∞.

5 The case of deleterious resistant types

The above analysis assumes that resistant cells are selectively neutral in
the absence of treatment. However, treatment resistance may be costly;
for example, it may expend energy that could otherwise be put towards
reproduction. It is therefore important to consider deleterious resistance
mutations.

For this section we suppose that resistant types reproduce at rate r̂/(1 +
ηX), while sensitive types divide at rate r/(1+ ηX). The death rate is d for
both types. We suppose resistant types are less fit than sensitive types, but
still fit enough to grow in the absence of density-dependent constraints; that
is, d < r̂ < r.

For the treatment phase we suppose, as above, that the resistant types
are unaffected, while the sensitive types have their division rate reduced to
r�/(1+ηX), with r� ≤ r and their death rate increased to d� ≥ d, with r� < d�.

The mathematical analysis of this case proceeds along the same lines as
the neutral case. We again use a three-phase approximation and calculate
the probability of treatment success as P = P1P2P3, where P1, P2, and P3

have the same meanings as above. The only difference lies in the generating
functions that are used.

5.1 Generating functions

5.1.1 Expansion

In the expansion phase, For the expansion phase, we have from [S2]

G1(ξ) ≡ E
�
ξXr

�
= exp

�
− Nu

1− d/r

�
1−

� 1

0

gNx(ξ) dx

��
,
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where gNx(ξ) is the generating function for a resistant lineage that arises
when there are Nx sensitive cells:

gNx(ξ) =
(ξ − 1) d/r̂ x−α − (ξ − d/r̂)

(ξ − 1)x−α − (ξ − d/r̂)
,

and

α =
r̂ − d

r − d
is the ratio of resistant cell growth rate to sensitive cell growth rate. The gen-
erating function G1(ξ) can also be expressed in terms of the hypergeometric
function F2 1:

G1(ξ) = exp

�
−Nuα

r

d
F2 1

�
1, α−1, 1 + α−1,

r̂ − dξ

d(1− ξ)

��
. (S8)

5.1.2 Steady state

For the equilibrium phase, we have r/(1 + ηX) = d. Thus the reproduction
rate of resistant types is

r̂/(1 + ηX) = r̂ d/r.

The generating function for resistant cells in the steady state phase is there-
fore [S1]:

G2(ξ, t) ≡ E
�
ξXr(t)

�
=

(ξ − 1) rr̂ exp
�

d(r̂−r)
r t

�
− (ξ − r

r̂ )

(ξ − 1) exp
�

d(r̂−r)
r t

�
− (ξ − r

r̂ )
. (S9)

5.1.3 Treatment

In the treatment phase, resistant types divide at rate r̂ and die at rate d.
The extinction probability of each lineage is therefore d/r̂.

5.2 Treatment success probability

5.2.1 Lineages arising during expansion

Following the logic of Section 3.1, the probability that no ultimately success-
ful lineage arises during expansion is

P1 = G1

�
G2(d/r̂, T )

�
, (S10)

using the formulas (S8) and (S9).
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5.2.2 Lineages arising during steady state

Following the logic of Section 3.2, the probability that no ultimately success-
ful lineage arises during steady state can be obtained as

P2 =exp

�
−
� T

0

dNu
�
1−G2(d/r̂, T − t)

�
dt

�

=




r − d− (r̂ − d) exp

�
−dT (r−r̂)

r

�

r − r̂





−Nur/r̂

.

(S11)

5.2.3 Lineages arising during treatment

The probability that no successful resistant lineages arise during treatment
is given by [S3]:

P3 = exp

�
−Nu

r̂ − d

r̂

r�

d� − r�

�
. (S12)

5.2.4 Overall treatment success probability

We calculate the overall treatment success probability P = P1P2P3, using
(S10), (S11), and (S12), as

P = G1

�
G2(d/r̂, T )

�
×




r − d− (r̂ − d) exp

�
−dT (r−r̂)

r

�

r − r̂





−Nur/r̂

× exp

�
−Nu

r̂ − d

r̂

r�

d� − r�

�
.

5.3 Limiting cases

5.3.1 The case T = 0

For T = 0 we have G2(d/r̂, 0) = d/r̂, thus

P1 = exp

�
−Nuα

r

d
F2 1

�
1, α−1, 1 + α−1,

r̂ − d2/r̂

d(1− d/r̂)

��

= exp

�
Nu

r

d

�
1 +

r̂

d

�−α−1

β1+r̂/d(α
−1, 0)

�
,
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where β is the incomplete Euler beta-function:

βx(a, b) =

� z

0

ya−1

1− yb−1
dy

β1+r̂/d(α
−1, 0) =

� 1+r̂/d

0

y(r−r̂)/(r̂−d)

1− y
dy.

As explained in Section 4.1, P2 = 1 for T = 0. P3 is again given by (S12).

5.3.2 The limit T → ∞

For the limit T → ∞ we have P1 = 1 as explained in Section 4.2.1. For the
steady state phase we calculate

P2 = lim
T→∞




r − d− (r̂ − d) exp

�
−dT (r−r̂)

r

�

r − r̂





−Nur/r̂

=

�
r − d

r − r̂

�−Nur/r̂

.

Formula (S12) for P3 is again unchanged.

6 Length of treatment

In this section we calculate the amount of time needed for treatment to
eradicate all sensitive cells in a tumor. We approximate the behavior of
sensitive cells during the treatment phase with a subcritical branching process
with division rate r� and death rate d�. In this process, a single cell will die
by time t with probability [S1]

q(t) =
−d� + d�e(d

�−r�)t

−r� + d�e(d�−r�)t
.

If there are N sensitive cells in a tumor, they will die out by time t with
probability

Q(t) =

�
−d� + d�e(d

�−r�)t

−r� + d�e(d�−r�)t

�N

.
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Thus the time needed for all sensitive cells to be eradicated by treatment in
a fraction p of tumors that had N cells when treatment started is

t =
1

d� − r�
log

�
−d� + r�p1/N

−d� + d�p1/N

�
.

7 Simulations

We employ exact computer simulations of the density-dependent branching
process defined in Section 1 of the Appendix in order to test the accuracy of
our analytical calculations. In simulations, we assume that the population
has reached steady state when the total number of cells in the tumor is 90%
of the carrying capacity. In Fig. 1 we show the excellent agreement between
the formula for overall probability of treatment (S7) success and simulations.
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Figure S1: Comparison of formula for overall probability of treatment success
(S7) and simulations. Parameter values are r = 0.25, d = d� = 0.24, r� = 0.1,
u = 10−5. Simulation results are averaged over 10, 000 runs.
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