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An error limit for the evolution of language
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On the evolutionary trajectory that led to human language there must have been a transition from a
fairly limited to an essentially unlimited communication system. The structure of modern human
languages reveals at least two steps that are required for such a transition: in all languages (i) a small
number of phonemes are used to generate a large number of words; and (ii) a large number of words are
used to a produce an unlimited number of sentences. The first (and simpler) step is the topic of the
current paper. We study the evolution of communication in the presence of errors and show that this
limits the number of objects (or concepts) that can be described by a simple communication system. The
evolutionary optimum is achieved by using only a small number of signals to describe a few valuable
concepts. Adding more signals does not increase the fitness of a language. This represents an error limit
for the evolution of communication. We show that this error limit can be overcome by combining signals
(phonemes) into words. The transition from an analogue to a digital system was a necessary step toward

the evolution of human language.
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1. INTRODUCTION

Language is the defining characteristic of humans. It is
the trait that sets us most clearly apart from all other
animals. While many animal species have evolved
sophisticated communication systems, they normally
consist of a limited number of context based signals (Frisch
1967; Marler 1970; Cheney & Seyfarth 1990; Hauser 1996).
Human language is essentially unlimited. This transition
from a limited to an unlimited representation system 1is
what interests us here.

According to Chomsky (1975, 1980), all of the roughly
6000 human languages that exist today have the same
underlying universal grammar which is the product of a
special circuitry in the brain, a language organ. Because
the language organ is innate, so is universal grammar.
Chomsky argues that all humans but no other animals
have universal grammar. Because of the lack of simple
precursors of human language, Chomsky argues that the
language organ must have evolved for some other purpose
(perhaps for combinatorial manipulation of mental
representations of objects and processes) and was later
taken over for language generation and comprehension.

In Bickerton’s (1990) classification, animal signals use
primary representations that refer to whole situations
(e.g. food or predator) while human language uses
secondary representations that consist of parts with their
own meaning (e.g. nouns referring to objects or verbs
referring to actions). Proto-languages have secondary
representations, but lack some of the most fundamental
properties of language such as a mapping between word
order and meaning or the use of grammatical morphemes
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for structuring the sentence. Proto-languages lie some-
where between animal communication and full-blown
human language. Users of proto-language include signing
chimpanzees, children under about two years of age and
first-generation speakers of pidgin. Both Chomsky and
Bickerton have difficulties in imagining how human
language could have evolved gradually by natural
selection.

Pinker (1995; see also Pinker & Bloom 1990) argues
that language is a complex trait, and that natural selec-
tion via gradual changes is the only mechanism that can
account for the emergence of such a complex trait. The
fact that our closest living relatives (primates) do not
have language does not argue against its evolution by
natural selection, because these species are not our direct
ancestors. Instead, simple language or proto-language
systems evolved gradually in our direct ancestors (most
likely in Australopithecus or early Homo species who lived
several million years ago). It seems unlikely that language
1s simply the by-product of a big brain. Instead language
was favoured by natural selection because of its adaptive
value. In agreement with Chomsky’s theory, Pinker
argues that all humans are born with a language instinct
which is responsible for universal grammar.

In anatomical terms, perhaps the two most important
events that are required for human speech are the
lowering of the larynx and the lateralization of the brain.
The first is required to produce the current variety of
phonemes, the second is required for the fine control of
the speech organs (Miller 1981; Lieberman 1991; Deacon
1997).

Our programme here and in related papers (Nowak &
Krakauer 1999; Nowak et al. 1999) is to outline an evolu-
tionary scenario that would allow the fascinating features
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of human language to evolve gradually by natural selec-
tion. We are convinced that human language originated
from animal communication systems, and we are there-
fore required to provide an explanation for how human
language might have evolved from simpler communica-
tion systems. Specifically, in this paper, we study the
evolution of communication in the presence of noise: indi-
viduals may mistake one signal for another (Smith 1971).
We show that this limits the amount of information which
can be transfered between individuals, and thus
represents an error limit for the evolution of communica-
tion. The fitness of a language cannot be increased
arbitrarily by just adding more signals. However, the
fitness can be increased by combining (a small number
of) signals into words. Linguists call the units that make
up words phonemes. Modern human languages have a
limited number of phonemes: all of the 317 languages in
the University of California Los Angeles Segment
Inventory Database (UPSID) have between 11 and 141
phonemes, but 70% of these languages have between 20
and 37 phonemes.

2. THE BASIC MODEL

Let us start by formalizing communication in terms of
an evolutionary game. Consider a group of individuals
(animals or early humans) which can communicate about
a given number of objects. ‘Objects’ 1s used here in a broad
sense to include objects in the environment, other animals,
other people, concepts, or actions. We assume that
successful communication is of benefit to both speaker
and listener: if the information ‘object 7’ is correctly trans-
mitted from speaker to listener, then both get a pay-off ¢
which defines the intrinsic ‘value’ of object .

A more general framework should allow different pay-
offs for speaker and listener, and also the possibility that
communication about some objects may only be of
benefit to one of them. We will explore this generaliza-
tion in a subsequent paper, and concentrate here on the
special case of ‘symmetric communication’ where equal
pay-offs are given to both speaker and listener. Following
the central assumptions of evolutionary game theory,
pay-off is equated to fitness (Maynard Smith 1982).
Thus, an individual that communicates well leaves more
offspring.

Assume that language L has n specific signals to
communicate about n objects. If two individuals who
speak language L meet, their pay-off is

F:i:ai. (1)
=1

This assumes that communication about all objects ¢
occurs with equal frequency, or else that any differences
in frequency are included in the @; values. If all objects
have the same ¢; value, then the overall pay-off is simply
given by the number of objects, ' = n. These equations
describe error-free communication.

Let us now include the possibility of misunderstanding
signals. Denote by u; the probability of mistaking signal
¢ for signal j. The corresponding error matrix U is a
stochastic n X n matrix. Its rows sum to unity. The
diagonal values, u; define the probabilities of correct
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communication. Given this error matrix, the pay-off for
language L becomes

F= zn:aiul-i. (2)
=1

Here, the implicit and natural assumption is that only
correct communication leads to a reward (even though
there may always be some spectacular exceptions).

The error matrix can be defined in terms of similarity
between signals. Denote by s; the similarity between
signals ¢ and j. ‘Similarity’ should be a number between
zero and unity, with unity denoting ‘identity’. Thus we
have s; = 1. The probability of mistaking signal 7 for j is
now given by wu; = s5;/Xj_;s;; hence, the probability of
mistaking signal 7 for j is defined by how similar signal ¢
is to signal j compared to how similar signal ¢ is to all
other signals in the language. The probability of correct
communication 1is given by u; = 1/X}_s5;. Thus, the
fitness function in terms of similarity becomes

F:; ai/;szj : (3)

Let us now imagine that signals (or more specifically
‘sounds’ if we consider a spoken language) can be
embedded in some metric space X and that d;; denotes the
distance between sounds ¢ and j. The similarity should
then be a monotonically decreasing function of their
distance, s; = f(d;)-

3. ALL OBJECTS HAVE THE SAME VALUE

Let wus first consider the situation where correct
communication about each object contributes the same
amount to the fitness function ¢; = 1 for all 2. Thus we
have

F:; 1/;f<dij> . (4)

The following questions arise: (1) What is the optimum
distribution of n sounds (signals) that maximize the
fitness of the language? (11) How does increasing the
number of sounds 7z affect the fitness of the language?
First, we describe three specific examples; then we
present a general result.

(a) The line

Suppose that sounds can somehow be represented by a
one-dimensional (1D) spectrum, for example the interval
[0, 1]. Sound i is given by the number x; € [0, 1]. The
distance between sounds ¢ and j is given by d;; = |x; — x;.
The perceived similarity between two sounds is a mono-
tonically decreasing function of their distance. As a
natural choice, we consider s; = exp ( — ad;), with a>0.
The parameter o can be interpreted as a measure of the
resolution of perception: when « is high perception is
more accurate.

For a given n, we want to find the optimum configura-
tion x;, . . ., x, that maximizes
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Figure 1. The optimum configuration for n =2-9 signals on
the line [0, 1]. The fitness function is given by equation (5).
We choose ao = 1. Note that all configurations are

symmetrical. For n > 5 we find multiplicity at the boundaries,
0 and 1.

F:Z I/Zexp(—alxi—le) . (5)

Clearly, for n =1, any choice of x; € [0, 1] will do. For
n = 2, the optimum configuration is to place the sounds
at opposite ends of the spectrum: x; =0 and x, = 1. For
n=13, we find x;, =0, x, =0.5, x5 =1. For n > 4, the
optimum configuration depends on . Numerical simula-
tions for a=1 and n=4 suggest that x =0,
xo =0.1305..., x3 =0.8695..., x, =1 is optimum. For
a=1 and n =25, the optimum configuration is, some-
what surprisingly, x; =x, =0, x3 =0.5, x, =x;=1.
Hence, the maximum fitness is achieved by using only
three different signals to communicate about five objects.
For a =1 and n =28, we find that three signals are at
zero and three signals are at unity, while only two signals
lie in the interior; thus the highest pay-off is achieved if
four different signals are used to communicate about
eight objects. Figure 1 shows the optimum configurations
forn=2,...,9fora=1

For arbitrary values of o, we find that for sufficiently
large numbers 7 the optimum configuration always
consists of collapsing some £ sounds at the opposite ends
of the spectrum (at zero and unity) while the remaining
n— 2k sounds are in the interior of the interval and
distinct. Hence, multiplicity (i.e. identical sounds are
used for distinct objects) occurs at the boundary of the
interval (at x =0 or 1) but not in the interior. The
number £ depends on « and n. All optimum configura-
tions are symmetrical. The interior sounds are in a fairly
regular arrangement; the distance between neighbouring
sounds is roughly constant.

While the exact optimum configuration for specific
values of o and 7 is difficult to calculate, we can prove
that as n grows to infinity, the maximum value of F
converges to the surprisingly simple expression

«

2

Fmax = 1 + <6>
This implies that for any given value of o the maximum
fitness of the language cannot exceed a certain limit.
Adding more and more signals (and objects that are

described by these signals) does not increase the fitness of
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the language beyond this limit. Each new signal-object
pair leads to a marginal fitness increase. This represents
an error limit for language evolution. There will certainly
be selection to increase the resolution o as much as
possible, but we expect this process to reach some physical
boundary.

(b) The circle

Another interesting case is generated by considering the
1D circle which corresponds to the not implausible situa-
tion where the spectrum of signals or sounds does not have
a beginning or end. Sounds are defined by numbers in
[0,1); the distance between x; and x; is given by
d; =min{lx; —x;|, 1 — [x; — x;|} . Again, let 5;; = exp (— ad;).
We find that the optimum configurations are symmetrical
(given by the regular polygons). Multplicity cannot
occur. For large n the maximum fitness converges to

al?2
Fmax = —/ N <7>
l —exp(—a/2)
As before, this equation represents an error limit.
Increasing the repertoire of the language does not allow
the total fitness to exceed this limit.

(c) Constant similarity

The simplest possibility is to assume that there is a
constant similarity s between any two distinct signals.
Thus, we have 5; =1 and s5; =5 where s <1. (The
geometric interpretation is that the signals are repre-
sented by the vertices of an n-dimensional simplex.) We

obtain the fitness function

n
F=rrn o ®)

This function is monotonically increasing and converges
for large n to F,,,, = 1/s. As before, increasing the size of
the repertoire n does not allow the language to exceed
this limit.

(d) A general result

For the general situation where the sounds (or signals)
are embedded in some arbitrary bounded subset of R* or,
more generally, some arbitrary pre-compact metric space
X, and where f(d;) is a declining function which is
positive on some interval [0,€), we can show that the
fitness

F:Z 1/Zf<dij> , 9)

is still limited by some constant ¢, which depends exclu-
sively on X and f, but not on n. In other words, as the
repertoire n increases, ' cannot exceed a certain value.
This is the most general formulation of the error limit
(A. Dress and M. A. Nowak, unpublished results).

4. DIFFERENT VALUES

Let us now turn to the situation where objects can have
different values a;. Without loss of generality we label the
objects according to their value: a; = a, = . ... Suppose
a given language L describes n objects. Because we are
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interested in the maximum fitness, we always assume that
L describes the n most valuable objects. The fitness func-
tion is given by

-5/

It is clear that /' need not be monotonically increasing
with n.

We shall illustrate this point using the specific example
of constant similarity. In this case, the fitness of a
language which describes the n most valuable objects
becomes

1 n
F(n) = m;di.

1

(10)

(11)

a; and

Let us define the two limiting values @ = lim,_,  a;

A =37 (a;— a). The decisive inequality is

s>af(a+ A). (12)

If this condition is fulfilled, then there exists a number #,
such that F(n)>F(n+1) holds for all n>n,. In other
words, the fitness F(n) will obtain a maximum value for
some intermediate value of n.  Conversely, if
s<af(a+4), then F(n) < F(n+1) for all n, with F(n)
becoming constant for large n if and only if s = a/(a + A4)
and the a, become constant for large n. In both cases,
however, the fitness is bounded and certainly cannot
exceed the value a, /s.

If the sequence a; converges to zero, 1.e. a = 0, or if 4 i3
infinite, then every positive s satisfies condition (12), and
we always have the situation that maximum fitness is
obtained by restricting one’s language to describing an
intermediate number of objects. However, if @ is greater
than zero and if 4 is finite, then there exists a critical
value of s (given by s, =a/(a+ A)) such that if s is
smaller than s, then no intermediate value of n will
achieve maximum fitness, which is given by a/s.

5. EVOLUTION

So far we have calculated the pay-off that is obtained if
the two communicating individuals use the same
language L. The framework can be extended to describe
the situation where the two individuals use different
languages, L, and L,. Suppose L, is given by {x, . . ., x,
and L, by {y, .. ., »,}. Thus language L, uses signal x;
for object ¢, while language L, uses signal y; for object .
Denote by s(x;,5;) the similarity between x; and y;. The
pay-off for L; versus L, is

n 1 1

1
FL,L = — a;Ss(X;,); n + n ’
( 1 2) 2; ( )}) ijlf(xia)}j> Zj:15<x}"_yi>
13)

The two denominators appear because if L; speaks and
L, listens then L, has to distinguish signal x; from all y,
whereas if L, speaks and L; listens then L; has to distin-
guish signal y; from all x;. This assumes that errors occur
while receiving messages and that each individual expects
to hear its own sounds and interprets all perceived sounds
within the context of its own repertoire.
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Figure 2. Stochastic adaptive dynamics of language evolution
can lead to maximum fitness. There are n = 5 signals
represented by numbers xy, . . ., x5 from the interval [0, 1].

As similarity function we chose 5; = exp ( — alx; — xj|) with

o = 1. Initially all signals are identical, x; = ... =ux; = 0.5.
At each time-step a new mutant, L', is generated and tries to
invade the existing language L. We always find that
F(L',L)<F(L,L). Thus a mutant can never invade in the
setting of deterministic adaptive dynamics. There is, however,
the possibility that F/(L',L") > F(L,L'). In this case the new
mutant would invade if it overcame the invasion barrier,
defined by the unstable equilibrium between L and L"
y=[FL,L)—=F(LL)F(L,L)+2F(L, L)+ F(L',L)]. Here
» denotes the frequency of L’ at the unstable equilibrium. We
assume that the probability that L' invades and replaces L is
given by exp(—/y). For the simulation we chose 8 = 10. The
figure shows how the language converges after 40 000 invasion
attempts (of which 44 were successful) towards the optimum
configuration, x; = x9 = 0, x5 = 0.5, x4 = x5 = 1. The pay-oft
function is given by equation (13).

As a specific example let us assume that all sounds are
taken from a 1D spectrum, the interval [0, 1], that
s(x;,9;) = exp (— alx; —y;]) and that ¢; =1 for all 7. A
surprising numerical observation is that every randomly
chosen language L seems to be a strict Nash solution, i.e. to
tulfill F(L,L)>F(L,L) for all L' # L. Thus, it is difficult
to improve a language which has been adopted by
everyone. Standard adaptive dynamics (Nowak &
Sigmund 1990; Metz et al. 1996; Hofbauer & Sigmund
1998) does not work in this context. Stochastic adaptive
dynamics (Wahl & Nowak 1999), however, provides an
evolutionary path that can lead to the optimum (figure 2).

6. WORD FORMATION

In this section, we show how the error limit can be
overcome by combining sounds into words. We will
provide a very simple and intuitive argument.

Words are strings of sounds. Linguists call these sounds
‘phonemes’. Suppose there are n phonemes. Let us at first
only consider words of length two phonemes. There are »?
such words. We assume that the similarity between two
words is the product of the similarities between the
phonemes in corresponding positions. Thus if word W
consists of phonemes ¢ and j, then the similarity between
the words W; and W, is
SWys W) = sigsir-

y

(14)
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Hence the fitness of a language that contains »? words to

describe the same number of objects is
F=ZZ<1/ZZw>~ (15)
=1 j=1 =1 =1

This can be rewritten as

r 12
F= ;(1/;s]> . (16)

Similarly, for word length L we obtain

F= Z<1/25]> . (17)

Hence, if F, (L) denotes the maximum fitness that can
be achieved for a given word length L, we have

Fmax<L> = FHIRX(I)L' (18>

This equation describes the maximum fitness for a
language that contains words of constant length L. We
can also calculate the maximum fitness of a language
containing words up to length L. Under the assumption
that words of different lengths cannot be mistaken for
each other, we get

Fmax<L> _;Fmax<l>k_ Fma);(l)_l . (19>

Hence combining sounds into words is an efficient way
to overcome the constraint of the error limit. The total
pay-off can grow exponentially with the length of words.
Of course, we should not expect that natural selection
will lead to ever increasing word lengths. Ultimately
word length is limited by the number of objects or
concepts that need to be described—see §6(b). In
addition there will be a reward for rapid communication
which will reduce the average word length and, in
particular, make frequently used words as short as

possible.

(a) A specific example: word formation with
constant similarity between phonemes
If any two distinct phonemes have the same similarity s
(see §3(c)), we obtain for a fixed word length / the fitness
function

-l
F=du[l+n-1)s] = (s+1:5) ~ (1/s)". (20)

This formula remains valid even if we—realistically—
assume that not all possible words are formed and that
selection favours the formation of word sets with large
Hamming distance. (The Hamming distance between
two words is defined as the number of different phonemes
in corresponding positions.) In this case, one could argue
heuristically that if N words with average Hamming
distance or ‘effective word length’ £ are formed, the fitness
that can be obtained is approximately (as in § 3(c)) given
by

F=N[1+(N—1)s"T~ (1/5)" (21)
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For details taking into account the insights of coding
theory (Shannon & Weaver 1949; Hamming 1980; Welsh
1988), see Plotkin & Nowak (2000).

As the number of words increases, the fitness
approaches the maximum value (1/5)*. Therefore, the
maximum fitness scales exponentially with the effective
word length £.

(b) Words describing objects with different values

In §4, we have seen that if objects have different values
a; the maximum fitness may be achieved by describing
only a finite (possibly quite small) number of objects. Here
we study how word formation can increase the optimum
size of the repertoire. Consider the fitness function

| N
F—— N4
T+ (N + 1)sk;al (22)

As before, N 1s the number of words (i.e. the size of the
lexicon) and £ is the effective word length.

Consider the specific example «¢; = max{0, 1 — 261},
that is, the values of objects form a linearly decreasing
sequence. We obtain

_n[l=6(n+1)]

F= . 3
1+ (n—1)s* (23)

For n > 1 this is
n[l — 6n]

F~——, 4
1 + nst (24)

F is a one-humped function, which obtains its maximum at

Now %I/ + (64181 = 1) (25)
If s* is small (specifically s* <« §), then we obtain from
equation (24) that N, = 1/(26), that is, all objects with a
positive value will be described. It essentially means that the
repertoire size 1s not limited by the language, but by the
availability of adaptively salient objects in the world. If
sF> 6 we have N, ~ 1//(s'6). Here the optimum
lexicon size scales as (1/5)"/%; hence, the lexicon size
increases exponentially with the effective word length (until
s¥ becomes smaller than 8, in which case the evolutionary
optimum is to describe all objects with a positive value).

7. CONCLUSION

We analysed the evolution of a simple symbolic
communication system in the presence of noise and
obtained the following results.

A general feature of models for language evolution is
an error limit: the fitness of a language (that is the total
amount of information that can be transferred) cannot be
increased beyond a certain threshold by simply adding
more signals. We show this result for a number of specific
cases and present a general formulation.

The error however, can be extended by
combining signals (that is phonemes in the context of
spoken language) into words. The maximum fitness scales
exponentially with the length of words. Thus word
formation (or ‘sequencing’; Miller 1981) appears to be an
essential step for the evolution of human language. It is

limit,
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the transition from an analogue to a digital communica-
tion system.

If communication about all objects is equally valuable,
then the fitness of a language increases monotonically
with the number of objects being described (converging to
the value given by the error limit). If objects have
different values, then describing only a small number of
objects can yield maximum fitness.

The evolutionary language game studied in this paper
has the unusual characteristic that appearantly all
randomly chosen languages when employed by the whole
population are evolutionarily stable strategies or Nash
equilibria (Maynard Smith 1982; Nash 1996). This means
that language evolution, in the context of this model, can
only occur if new variations are adopted by (small) clusters
of individuals. If there is a tendency to adopt new varia-
tions then ‘mutation’ in the language game may differ in an
important way from mutation in genetic systems.

There is an interesting parallel between our error limit
and the observation that word formation can extend this
limit, and Shannon’s noisy coding theorem. Shannon
states that the maximum error in comunication declines
exponentially as the word length increases linearly (see
Shannon & Weaver 1949). In a forthcoming paper we
will show the formal similarity between these two results.

Finally, we note that word formation in most human
languages consists of two different processes: there is
the (somewhat arbitrary) concatenation of phonemes
that gives rise to multiple-phoneme words such as
banana or Australopithecus, and there is the rule-based
variation of word-stems (morphology) to convey
different meanings such as walk and walked. The first of
these two processes is what is important for overcoming
the error limit described in this paper. The second and
more difficult process belongs to theories for the evolu-
tion of grammar.
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