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We study the influence of driver mutations on the spatial evolutionary dynamics of solid tumors. We start with
a cancer clone that expands uniformly in three dimensions giving rise to a spherical shape. We assume that cell
division occurs on the surface of the growing tumor. Each cell division has a chance to give rise to a mutation
that activates an additional driver gene. The resulting clone has an enhanced growth rate, which generates a local
ensemble of faster growing cells, thereby distorting the spherical shape of the tumor. We derive formulas for the
abundance and diversity of additional driver mutations as function of time. Our model is semi-deterministic: the
spatial growth of cancer clones is deterministic, while mutants arise stochastically.
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I. INTRODUCTION

Cancer arises when somatic cells receive multiple mutations
that enhance their net reproductive rate [1,2]. Tumors contain
35 to 70 genetic alterations that change protein sequences [3].
The vast majority of those mutations are passengers that do not
confer a selective growth advantage. A small subset, however,
are driver mutations that promote tumorigenesis. In the human
genome about 135 genes are known that can function as drivers
when mutated (either by point mutation, insertion, deletion, or
amplification). Driver mutations affect pathways that regulate
cell survival, proliferation and genome maintenance. Any
tumor contains between 2 to 8 driver mutations [3]. In this
paper we study the accumulation of such drivers in a spatial
model of tumor growth.

Mathematical modeling of cancer evolution is a rapidly
developing field [4]. Cancer is a multi-facet phenomenon
and many features need to be addressed in modeling. The
age incidence of cancers [5], the effect of tissue geometry
and chromosomal instability on cancer initiation [6,7], the
inactivation of tumor suppressor genes [8], the accumulation
of driver and passenger mutations in expanding tumors [9–12],
the molecular clock of cancer [13], and the emergence of
resistance to cancer therapy [14–18] are some of the issues
that have been studied.

Modeling the evolution of cancer has been mostly per-
formed in the homogeneous setting [4,19] which is an obvious
idealization, especially for solid tumors. The homogeneous
setting allows to focus on the temporal dynamics and provides
a useful theoretical laboratory to probe the efficacy of drug
combinations. A more faithful spatial modeling is necessary
[20–22] for understanding tumor invasion and metastasis [23],
and effort in this direction is growing. Previous spatial models
mainly focus on the evolution of already existing types of cells
in space. Most models are either continuum mathematical
models based on partial differential equations [21,22,24] or
discrete cell population models using cellular automata-type
computer simulations [25]. Simulations are often performed
at cell levels, incorporating cell movement and different cell
types, and are either lattice based or off-lattice [22,25,26]. One
of the challenges in the modeling using partial differential

equations governing densities of different cell types is that
the boundary of the tumor is also evolving (free boundary
problem) [24,27–29].

Here we develop a geometric approach for the accumulation
of driver mutations in spatially expanding tumors. The spatial
inhomogeneity of tumors and the spatial distribution of genetic
mutations have been studied in recent experimental and
theoretical works [13,30]. Since different mutations are present
in different spatial regions of the tumor, spatial inhomogeneity
is relevant for choosing the optimal targeted drug therapy for
patients. In this paper we focus on the evolving shape of the
tumor and its interplay with the onset of successive driver
mutations. We deliberately simplify the model as much as
possible, while keeping the key features, namely the spatial
growth and the competition between different mutants. The
goal is to eventually apply spatial tumor modeling of the
accumulation of driver mutations to problems which were
recently analyzed in the idealized ‘mean-field’ framework of
well mixed population of cells (see, e.g., [9,10,31–34]), as
well as to other problems which can only be formulated in the
spatial framework.

Our model is reminiscent of the pioneering lattice model
of cancer which incorporates mutation [35–37]. In contrast to
this earlier work, we assume that mutations occur only on the
surface of the growing tumor. Furthermore, we assume that
the spatial expansion is deterministic. Only mutational events
are stochastic. We also mention a few more recent related
studies. In Ref. [38], the accumulation of many successive
driver mutations was studied by computer simulations on a
two-dimensional lattice. It was found that space makes the
arrival of new driver mutations slower than in a well-mixed
population. Since including both space and mutation make
models quite complex, one usually resorts to simulations and
to approximate treatments [39,40]. Analytical results have
been established in a few simple situations, e.g., for the
one-dimensional tissue geometry [17,41,42] and in arbitrary
dimension in the case of the accumulation of neutral mutations
[43].

Our model has two basic ingredients: stochastic nucleation
of new mutants and deterministic growth of existing cell types.
Nucleation and growth are ubiquitous natural phenomena, and
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our model overlaps with classical models of such processes.
One example is a polynuclear growth model (see [44] for a
review). Similar models have been used in cosmology (see
[45] for a review). The contrasting features of our model
is the nucleation on the surface of the growing tumor and
differences in the growth rates; in other applications nucleation
events usually happen in the bulk and growth rates are
equal. For example, in cosmological applications [45] cosmic
bubbles grow at a speed of light. In our model a mutation
activating a driver gene leads to enhanced growth rate leading
to the distortion of the spherical shape of the original tumor.
Nucleation and growth processes with different growth rates
have been studied in [46,47]. Similar modeling has been in the
context of expanding bacterial colonies [48], particularly in
modeling of selective sweeps in growing microbial colonies.
Our model is mathematically the same as the one proposed in
that latter context in Ref. [49] and studied in details in Ref. [50].
The experimental setting [48–50], as well as numerical [48]
and theoretical [50] analyses were two-dimensional. Our focus
is on three dimensions and our main findings are related to
probabilistic aspects.

We analyze in detail the simplest case of the competition
between the original cancer clone and one mutant clone. We
describe the boundary separating the clones, determine the
time when the mutant clone envelopes the original cancer
clone which thereby ceases to grow any further, and compute
the probability that it happens before the arrival of any other
mutant clone.

Our model is a step toward understanding the three-
dimensional growth dynamics of cancer. In particular, our aim
is to study how the growth pattern is influenced by driver
mutations that lead to faster growth thereby distorting the
basic shape of the tumor. Experimental applications include the
spatial genetic analysis of primary tumors [13] or the growth
of spheroids and organoids in laboratory settings [51,52].

II. THE MODEL

In our model, cells only proliferate on the surface of the
tumor. Inside the tumor, cells are non-dividing, hence there are
no evolutionary dynamics there. This assumption is plausible
for early stages of tumor progression, where only tumor cells
close to the surface can get enough oxygen or other nutrition
to divide. A typical tumor developing in vivo has most of
its cell proliferation constrained to the border [53–55], which
suggests that cell surface diffusion is the main mechanism
responsible for growth in any type of tumor. At later stages
of tumor progression, when angiogenesis starts to work, this
assumption may no longer be valid, but there can always be
interior regions with low supply of nutrients and oxygen and
low activity of cell division.

The dynamics of our model is governed by two rates.
The first represents the rate at which the surface of the
tumor advances in the direction orthogonal to the surface.
The second is the rate at which new driver mutations occur
on the surface. Without mutations, the original tumor grows
spherically [55–57]. Since cell divisions only occur on the
surface of the tumor, mutations can occur only there, at a
constant rate per unit surface area and unit time. We include in
this mutation rate the survival probability of mutant clones. In

other words, we are only tracking mutants that survive. Since
we assume that these mutants have selective advantage over
the original tumor, the mutant clones keep spreading. A more
comprehensive consideration tracking all mutants including
those that quickly disappear is necessarily based on stochastic
growth [58].

We set both the speed of the original tumor growth and
the mutation rate to unity. This can always be done by
appropriately choosing the units of length and time. If no
mutation has happened up to time t , the original tumor is a
growing ball during this time interval and with our convention
about the speed its radius is t at time t . The appearance of
mutants changes this simple pattern since the part of the
surface that belongs to a mutant grows with a larger speed.
The surface of the tumor still grows in the normal direction
but the competition between mutants and the original tumor,
and also between different mutants once they touch, affects
the surface.

We focus on the biologically most relevant three-
dimensional case, but we also present a few basic results for
two dimensions. In analytical work, we limit ourselves to the
simplest case of two types of cells: (i) the initiating cancer
cell with growth rate one; and (ii) a mutant cancer cell with
growth rate v > 1. The mutant cell arises by activation of an
additional driver. The surface of the tumor either belongs to
a mutant clone or the original tumor. A point at a distance dt

from the surface of the tumor will be occupied by a mutant
clone dt times later, if a mutant can reach that point earlier than
a non-mutant (see a more detailed description later). A mutant
clone advances a distance vdt and a point at the surface will be
occupied by a mutant if there is a mutant clone on the surface
within a distance βdt , with β = √

v2 − 1. Hence the relative
area of the surface which is covered by mutant is expanding,
with the boundary moving at constant speed β, see [49,50].

The simplicity of the model is manifested by its dependence
on a single dimension-less parameter v. We have achieved
this by rescaling the length scale and the time scale. (The
dependence of the results on the detailed parameters is
discussed in Sec. V).

III. SINGLE MUTANT CLONE

In this section we investigate the interaction between the
original tumor and a single mutant clone. The original tumor
begins to grow at time t = 0 at the origin. Without loss of
generality we can choose t = 1 as the birth time of the mutant
clone. At this point the original tumor is a ball of radius one
around the origin. We choose the coordinate system in such
a way that (x,y,z) = (1,0,0) is the seed of the mutant clone.
Since we do not consider other birth events, the tumor remains
rotationally symmetric around the x axes and we can focus on
a two-dimensional cut through the (x,y) plane. [For a mutant
clone initiated at spherical coordinates (r0,θ0,φ0) the shape is
the same as the one initiated at (r0 = 1,θ0 = 0,φ0 = 0), with
both space and time stretched by r0 supplemented by rotation
θ0, φ0].

A two-dimensional cut of a single mutant clone is depicted
in Fig. 1. Figure 1 shows that the original tumor grows up to
a capture time tc, and it ceases to grow for t > tc. The final
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FIG. 1. (Color online) Slices of a tumor with a single mutant
clone at times t = 2,4,16.6,20. The original tumor is initiated at
the origin, and the mutant is initiated at t = 1 at (1,0,0) and has
fitness v = 1.5. The tumor at the initiation time is drawn as a thin line
at each stage to show the length scale. The boundaries of the original
tumor are depicted by thick lines emanating from (1,0), other thick
lines represent the outer boundary of the mutant clone. The central
part and the side parts of the outer boundary of the mutant clone are
described by different functional forms. On the lower left picture the
original tumor is just captured by the mutant clone, this happens at
tc = eπ/β = 16.6087 . . . ; on the lower right one the mutant overgrows
the enclosed original tumor.

“barnacle” shapes of the original tumor are shown on Fig. 2.
The shapes shown on these figures were previously found by
numerical [48] and analytical [49,50] means in analyses of
growing microbial colonies. More general shapes arise arise
in the context of nucleation and growth [46]; in our language
they correspond to the situation when the mutant is initiated
away from the surface. We briefly re-derive these results as we

FIG. 2. The final barnacle shape of the original tumor after it has
been captured by the mutant clone. Shown results corresponds to the
fitness values v = 1.3,1.5,2. The mutant is always initiated at t = 1,
and the capture takes place at tc = eπ/β = 43.9052,16.6087,6.13371,
respectively, for the illustrated fitness values. The circle represents
the original tumor at the initiation time t = 1 of the mutant clone.

use them to compute the final volume of the original tumor;
we shall also need these results in the next section.

In the two-dimensional cut through the (x,y) plane, Fig. 1,
the shape of the original tumor at time t has generally two parts.
The first is the inner boundary between the original tumor
and the mutant, which in polar coordinates is r(θ ) = eθ/β . In
Cartesian coordinates,

x(θ ) = eθ/β cos θ, y(θ ) = eθ/β sin θ. (1)

This is valid when 0 � θ � θ0, where

θ0 = β log t. (2)

For θ > θ0, the surface of the original tumor has not yet been
affected by the mutant, so it is a sphere of radius t around
the origin. Note that the above curve (1) is known as the
logarithmic spiral. It was already studied by Descartes and
Jacob Bernoulli, and it appears in numerous contexts ranging
from the Nautilus shell and insect flights [59] to nucleation-
and-growth processes [46] and bacterial growth [48–50].

The part of the original tumor which has not been affected
by the interaction with mutant clone lies in the angular region
θ0 � θ � π . When θ0 becomes equal to π , the original tumor
is completely covered by the mutant. This happens at time

tc = eπ/β . (3)

After this time the original tumor ceases to grow any further,
and its final volume is

Vc(β) = 2π

3

β2

β2 + 9
(1 + e3π/β). (4)

The mutant at time t is separated from the original tumor
by the inner boundary (1). The outer boundary of the mutant
consists of two parts. The middle part is a sphere around (1,0)
with radius v(t − 1):

x(θ ) = 1 + v(t − 1) cos θ,

y(θ ) = v(t − 1) sin θ
(5)

for 0 � θ � arccos(1/v), and the outer part next to the original
tumor is given by

x(θ ) = t cos θ − β(t − eθ/β ) sin θ,

y(θ ) = t sin θ + β(t − eθ/β ) cos θ
(6)

for 0 � θ � θ0. Note that θ appearing in Eqs. (5)–(6) is a
parameter, not a polar coordinate.

Figure 3 helps to explain Eqs. (1)–(6). The boundary
between the mutant and the original clone moves at constant
speed β = √

v2 − 1, see Fig. 3. Hence the boundary of
a mutant clone initiated at (r,θ ) = (1,0) at time t = 1 is
described by r dθ

dr
= β from which

r = eθ/β (7)

giving Eq. (1). Equating t = eθ0/β gives Eq. (2). Setting θ0 = π

yields the capture time (3).
The inner boundary between the mutant clone and the

original tumor is given by Eq. (7). The outer boundary of
the mutant is composed of two pieces. The first one is a circle
(blue curve in Fig. 1) centered at the seed of the mutant clone,
i.e., at (x,y) = (1,0), with radius R = v[t − 1]. The opening
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FIG. 3. (Color online) Illustration for the spreading of the mutant
clone (a two-dimensional cut is drawn). On the left panel the initiation
of a mutant clone is shown. A tiny segment of the surface of the
original clone (a shaded region) is almost flat. After a small time
interval dt , the surface is composed by a circular arc and straight
segments. On the right panel the evolution of the surface of the tumor
is shown for later times. The angle φ stays constant during the process.

half-angle φ of this part of the circle is found by computing
the inclination angle between curve (7) and the x axis. One
obtains φ = arccos(1/v).

To determine the remaining part of the boundary (red curve
in Fig. 1) one draws straight lines in the tangential direction
from each point of the curve (7) as it is illustrated in Fig. 4.
The angle between this tangential and the x axes is φ at any
point of r(θ ). If we draw the tangential from the point given

FIG. 4. (Color online) The shape of the mutant clone (only a two-
dimensional cut is drawn). The mutant clone is initiated at (1,0). One
part of the mutant position is a finite wedge originated from (1,0)
with half-angle φ and hence the outer boundary being a circle of
radius v(t − 1). The thick line indicates the boundary of the original
tumor, and the curve between the original tumor and the mutant clone
is given by the parametric curve r(θ ). The top black dot represents a
general point on the outer boundary of the mutant clone. It is reached
by the mutant clone originating from the middle black dot in time
t − r(θ ) and propagating at speed v.

by polar coordinates (r(θ ),θ ), the mutant clone has still time
t − r to grow, so the boundary will be at

x(θ ) = r(θ ) cos θ + v[t − r(θ )] cos[θ + arccos(1/v)],

y(θ ) = r(θ ) sin θ + v[t − r(θ )] sin[θ + arccos(1/v)]
(8)

which reduce to Eq. (6).
Let us compute the cross-section area of the original tumor

at the moment of capture. (Equivalently, the area in the two-
dimensional setting). Using Eq. (7) we get

Ac =
∫ π

0
dθ r2(θ ) = β

2
(e2π/β − 1). (9)

Similarly one can compute the total cross-section area
covered by the tumor (the original tumor and the mutant clone)
at the moment of capture:

Atot = β3
(
2tc − 1

2

) + (
π + πβ2 − 3

2β3
)
t2
c

+ [v(tc − 1)]2 arccos(1/v). (10)

For instance, the term in the bottom line represents the area of
the wedge originating at (1,0) with half-angle arccos(1/v) and
the outer boundary being a circle of radius v(tc − 1).

The ratio Atot/Ac represents the relative enhancement of
the area. Perhaps a better characteristic is the ratio

Atot

Ano
= 1 + β2 − 1

2π
β3

(
1 − t−1

c

)(
3 − t−1

c

)
+ [

v
(
1 − t−1

c

)]2 arccos(1/v)

π
(11)

of the total cross-section area covered by the tumor to the
area Ano = πt2

c which would be covered by the tumor if there
was no mutation. Analysis of Eq. (11) shows that when β

increases from 0 to ∞, the ratio monotonically increases from
1 to 1 + 5π2/6 = 9.22467 . . ..

In three dimensions, the calculations are similar. The final
volume of the original tumor at the moment of capture is given
by the announced expression (4):

Vc = 2π

3

∫ π

0
dθ sin θ r3(θ ) = 2π

3

β2

β2 + 9
(e3π/β + 1).

Note also that the surface area of the original tumor at the
moment of capture is

Sc = 2π

∫ π

0
dθ sin θ r(θ )

√
r2(θ ) +

(
dr

dθ

)2

= πv
2β

β2 + 4
(e2π/β + 1).

The total volume occupied by the tumor at the moment of
capture is

Vtot = π

3

6β4(β2 + 4) − 9β4(β2 + 9)tc + C(β)t3
c

β4 + 13β2 + 36

+ 2π

3
(v − 1)v2(tc − 1)3 (12)

with C(β) = 3β6 + 25β4 + 268β2 + 144. One can character-
ize the enhancement of the volume of the tumor at the moment
of the capture by dividing the total volume (12) on the volume

022705-4



SPATIAL EVOLUTION OF TUMORS WITH SUCCESSIVE . . . PHYSICAL REVIEW E 92, 022705 (2015)

Vno = 4π
3 t3

c which would be covered by the tumor if there was
no mutation:

Vtot

Vno
= 6β4(β2 + 4)t−3

c − 9β4(β2 + 9)t−2
c + C(β)

4(β4 + 13β2 + 36)

+ 1

2
(v − 1)v2

(
1 − t−1

c

)3
. (13)

Analysis of Eq. (13) shows that when β increases from 0 to ∞,
the ratio (13) monotonically increases from 1 to π3

2 + 9π2

4 −
8 = 29.7097 . . ..

IV. PROBABILISTIC ASPECTS

In our simplest model with just one type of mutant cancer
cells, distinguishable mutant clones must start on the surface
of the original tumor which is not yet covered by mutant
clones. The original tumor is eventually captured and no new
distinguishable mutant clones will appear after that. Among
the simplest probabilistic characteristics are therefore the
number of eventual mutant clones, and the times of initiation
of mutant clones, which we shall now study for the first two
clones. Then we shall explore the fraction of mutant tissue
within the tumor with several clones.

A. Arrival time of the first mutant clone

Let T be the arrival time of the first mutant clone, and let
us compute the probability P (T > t) that not a single mutant
clone has been born during the time interval (0,t). Mutant
clones are spontaneously generated at unit rate per unit area
of the growing spherical surface, and the surface also grows
with unit rate. Hence P0(t) = exp[−volume]. The volume of
the ball of radius t is 4πt3/3, so

P (T > t) = exp

[
−4πt3

3

]
. (14)

Thus the first mutant arrives with the probability density

f (t) = −dP (T > t)

dt
= 4πt2 exp

[
−4πt3

3

]
. (15)

The expected value E(T ) = ∫ ∞
0 dt tf (t) and the variance

Var(T ) for the first arrival time are

E(T ) = �(1/3)

62/3π1/3
≈ 0.55396,

Var(T ) = 6�(2/3) − �(1/3)2

64/3π2/3
≈ 0.0405358.

B. Single mutant clone

In Fig. 5, the three-dimensional tumor with a single mutant
clone is depicted. Let N be the number of mutant clones
originated from the initial tumor. What is the probability
P (N = 1) that there is only a single mutant clone from the
original clone, so we observe the final barnacle shape of the
original tumor. The first mutant clone appears at a random
time T , and at distance T from the origin. Conditioning on
this time, there are no further mutations with probability

P (N = 1|T = t) = e−[Vc(β)−4π/3]t3
(16)

FIG. 5. (Color online) Shape of the tumor with a single mutant
clone at times t = 2,3, and 5.5. The mutant is initiated at t = 1 and
has fitness v = 1.5. The boundary of the mutant clone is red.

since [Vc(β) − 4π/3]t3 is the total rate of production of the
second mutant. Now taking the average over the initiation time,
that is averaging over the density f (t) we obtain

P (N = 1) = EP (N = 1 |T ) = 4π

∫ ∞

0
t2e−Vc(β)t3

dt

= 4π

3Vc(β)
= 9 + β2

β2

2

1 + e3π/β
. (17)

This is the probability that there is exactly one mutant clone,
so the original tumor has a final barnacle shape. It is extremely
small for realistic relative speeds v � 1.4; it is around 0.36%
for v = 1.5, and around 3.5% for v = 2, although it approaches
one as v → ∞.

C. Arrival of the second mutant clone

We can also calculate the probability distribution of the
time of the second mutation. Let T1 be the time of the first
mutation (which is finite with probability one), and let T2 be
the time of the second mutation with T2 > T1, which is finite
with probability 1 − P (N = 1). As before, we can write the
conditional probability

P (T2/T1 > τ |T1 = t) = e−[V (τ )−4π/3]t3
, (18)

where 1 � τ � tc = eπ/β , and

V (τ ) = 2π
β2 + (β2 + 9)τ 3 + 3τ 3(β sin θ̃ + 3 cos θ̃ )

3(β2 + 9)

is the volume of the original tumor, with θ̃ = β log τ . The
simplest way to obtain this volume is from its derivative
dV/dτ = 2πτ 2(1 + cos θ̃ ), which is the surface of a sector
with half-cone angle π − θ0 = π − β log τ . Now averaging
over the arrival time of the first mutant clone we obtain

P (T2/T1 > τ ) = EP (T2/T1 > τ |T1)

= 4π

∫ ∞

0
t2e−V (τ )t3

dt = 4π

3V (τ )

for 1 � τ � eπ/β . Of course, P (T2/T1 > 1) = 1, and
P (T2/T1 > τ ) = P (N = 1) = 4π

3Vc(β) for τ � tc = eπ/β ,
which corresponds to no second mutation.
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D. Spatial characteristics of mutants

Outside of the ball of radius t all tumor cells are mutants,
since only mutant tissue grows faster than one. Here we
investigate the probability that a random point on distance
r � t belongs to a mutant.

Consider first the two-dimensional case. Point (r,0) is
covered by a mutant initiated at (r0,θ0) if this initial point
is on or within the boundaries

r0 = re−|θ0|/β (19)

with −π � θ0 � π . Mutations arrive as an inhomogeneous
Poisson process, so we need the total rate of arrival for such a
mutation is this region

A =
∫ π

0
dθ [r0(θ )]2 = a(β)r2, a(β) = β

2
(1 − e−2π/β ).

Hence the probability of no mutant at distance r in the tumor
is

Wr = e−A = e−a(β)r2
. (20)

A random point in the tumor within a disk of radius r , with
r � t , is non-mutant with probability

W�r = 1

πr2

∫ r

0
dr ′ 2πr ′e−a(β)(r ′)2 = 1 − e−a(β)r2

a(β)r2
. (21)

The average non-mutated tumor mass tends to a constant in
the large time limit

lim
t→∞ πt2W�t = π

a(β)
. (22)

The calculation is similar in three dimensions. Here, the
boundary of points which cover (r,θ = 0,φ = 0) is given by
the same expression r0(θ ) as in two dimensions, and the total
rate of mutants arriving in this region equals to its volume,
which is

V = 2π

3

∫ π

0
dθ sin θ r3

0 (θ ) = b(β)r3 (23)

with

b(β) = 2π

3

β2

β2 + 9
(1 + e−3π/β ). (24)

At time t , a random point at distance r , with r � t , is non-
mutant with probability Wr = e−V . Thus

Wr = e−b(β)r3
. (25)

Further, a random point in a ball of radius r is non-mutant with
probability

W�r = 3

4πr3

∫ r

0
e−b(β)r ′3

4πr ′2dr ′ = 1 − e−b(β)r3

b(β)r3
.

The average non-mutated tumor volume approaches to

lim
t→∞

4π

3
t3W�t = 4π

3b(β)
(26)

in the large time limit.
Let us check the consistency of Eq. (26) in the extreme case

of v = ∞. The right-hand side of Eq. (26) is equal to 1 in this
limit since b(∞) = 4π

3 according to Eq. (24). If the mutant

was born at time τ it immediately captures the original tumor
when v = ∞, so the volume of the original tumor is 4πτ 3

3 . The

average volume is
∫ ∞

0 dτ f1(τ ) 4πτ 3

3 and using Eq. (15) we
find it is indeed equal to 1.

V. REDUCTION OF PARAMETERS

Our basic model depends on a single dimensionless
parameter, v, the relative growth rate of mutant clones. This is
the consequence of a reduction of parameters. Here we discuss
how to apply the results if one uses dimension-full units. Let
us measure time in days, and distance in cm. In general we
have the following parameters describing the system. The
surface of the original tumor grows in the normal direction
at rate V0, and mutations arrive at the surface of the tumor at
rate U per unit time and unit surface area. The mutant clone
growth at rate V1. Let us define the new unit length and time as

L0 =
(V0

U

)1/3

T0 = (
UV2

0

)−1/3 = L0

V0
.

Measuring length and time in these new units, the original
clone grows at rate one, and mutations arrive at rate one.
The speed of the fronts and mutation rates per surface area
might be directly accessible experimentally. Having obtained
the unit length and time L0,T0 for the tumor, all results of the
paper could be used when replacing time with t → t/T0 and all
lengths with l → l/L0. The scaled speed of the mutant clone is

v = V1/V0

which is the only parameter of the scaled model.
We can obtain some estimates for the values of the above

parameters as follows. In our model the original tumor grows
only on the surface as a sphere. Starting from a single cell it
reaches volume VT in time T . In the scaled coordinates the
tumor is just a ball of radius scaled time, but here we include
explicitly the scaling for the space and time units as given
above to obtain

VT

L3
0

= 4π

3

(
T

T0

)1/3

.

Equivalently, we can rewrite this expression as

VT = 4π

3
(V0T )3.

This gives an estimate for the growth rate

V0 = 1

T

(
3VT

4π

)1/3

.

We estimate the surface mutation rate from the number of
driver clones found in a tumor. The mean number of clones is
4πt3/3 in the dimensionless form, or

�T = 4π

3

(
T

T0

)1/3

= VT

L3
0

= VT

U
V0

which then leads to the estimate

U = V0�T

VT

.

From the above formulas we can obtain an order estimate
for our parameters. We expect a tumor of VT ≈ 1–10 cm3
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after 5 to 10 years of growth (so T ≈ 5–10 × 365 day), and
we expect of the order of �T ≈ 1–10 driver clones [3,10].
Note that we expect more clones in larger tumors, so roughly

U
V0

= �T

VT

≈ 1

cm3
.

This leads to the estimates

V0 ≈ 10−3 − 10−4 cm

day
, U ≈ 10−3 − 10−4 1

cm2day
.

Finally, let us estimate the relative speed of the mutant clone
v = V1/V0. In [10] it was estimated that the birth rate of cells
with k driver mutations is larger by sk than their death rate
(that is their fitness is sk), with s being 0.005. If the original
clone has k driver mutations, the mutant clone is expected to
have k + 1 mutations. We assume that the speed of a clone is
proportional to its fitness advantage, and since everything else
is assumed to be the same in the clones, the relative speed of
the mutant clone becomes

v = k + 1

k
.

Since k is typically an integer between 1 and 8 [3,10], the
speed is 1 < v � 2. This is the only parameter of the scaled
model.

VI. DISCUSSION

Cancer is a byproduct of evolutionary dynamics among
somatic cells of a multi-cellular organism. Cancer arises as
cells receive mutations that enable them to escape from control
mechanisms and proliferate at higher rates. Most mathematical
or computational models of genetic cancer evolution assume
well mixed populations of cells without spatial interactions or
constraints. This homogeneous setting represents a reasonable
framework for the modeling of liquid tumors, but in solid
tumors the effects of spatial structure are certainly important.

In this paper, we studied the emergence of driver mutations
in a spatial model. Driver mutations enhance the reproductive
rate of cancer cells. We assumed that lesions expand roughly
with spherical shape. Prior to angiogenesis most cell division
occurs on the surface of the expanding tumor. New mutants,
which arise on the surface, lead to localized faster growth
distorting the spherical shape of the tumor. Our model
describes both spatial and temporal evolution and accounts
for mutations that activate additional driver genes, leading
to enhanced proliferation rates of cancer cells. The model is
designed to be as simple as possible, with the basic version
depending on the single parameter, the ratio of the growth rates
of the mutant clone and the initiating cancer clone. Even in this
setting the emerging behavior is rich. For example, the initial
clone is inevitably captured by the mutant. Hence the initial
clone grows to a fixed size as time goes to infinity. The capture
time, however, is much larger than the naive estimate would
suggest. This finding correlates with the general conclusion
emerging from other studies, see, e.g., [38], namely that spatial
structure reduces the rate of cancer progression.

The basic version of our model assumes that there is one
type of mutant cells. One can consider n types of mutant cells
with fitnesses 1 < v1 < v2 · · · < vn. Each type is additionally
characterized by its birth rate μj . We can still set the birth

FIG. 6. (Color online) Shape of the tumor with many mutant
clones arrived at different times with different fitness values. Mutant
clones are initiated stochastically at constant rate on the surface of
the original tumor, and then they grow deterministically at constant
rate. The growth rates of the mutant clones were chosen randomly
between 1 and 2 for this illustration.

rate of the first type of mutant to unity; other birth rates
μ2, . . . ,μn are parameters of the model. Overall, we have
2n − 1 dimensionless parameters. We should specify where
new mutant cells can arise. In the simplest case mutant cells
of type j + 1 can be born only on the growing surface of
the mutant clone of type j . The most aggressive mutant of
type n eventually captures all other mutants, but the path to
this ultimate fate can be very complicated and unpredictable. In
Fig. 6 a tumor with multiple mutant clones that have different
fitness values is drawn for illustration.

Our model is semi-deterministic—the spatial growth of
the tumor is deterministic, while the birth of new mutants
is stochastic. The former feature simplifies the analysis. The
rules of the dynamics are isotropic: in isolation a mutant
clone exhibits a spherical growth. This assumption is realistic
and appropriate for describing solid tumors, especially small
avascular tumors. Spheroidal shapes are used as a model in
anti-cancer therapies [51,60,61]. Yet the stochasticity of the
arrival of mutant clones and the strong interaction between
the initial clone and mutant clones, and also between different
types of mutant clones, results in highly anisotropic shapes.

An important virtue of our model is simplicity. The
tractability of the model encourages to pursue its extensions.
It would be interesting to study the effect of random growth
rates for each mutant clone, the dynamics of new mutant clones
arising within mutant clones, and the time it takes to accumu-
late several additional driver mutations [9,10,13,32,38,62] in
a spatial setting.
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