
CHAPTER 2

How populations cohere: five
rules for cooperation

Martin A. Nowak and Karl Sigmund

Subsequent chapters in this volume deal with

populations as dynamic entities in time and space.

Populations are, of course, made up of individuals,

and the parameters which characterize aggregate

behavior—population growth rate and so on—

ultimately derive from the behavioral ecology and

life-history strategies of these constituent indivi-

duals. In evolutionary terms, the properties

of populations can only be understood in terms

of individuals, which comes down to studying

how life-history choices (and consequent gene-

frequency distributions) are shaped by environ-

mental forces.

Many important aspects of group behavior—

from alarm calls of birds and mammals to the

complex institutions that have enabled human

societies to flourish—pose problems of how coopera-

tive behavior can evolve and be maintained. The

puzzle was emphasized by Darwin, and remains

the subject of active research today.

In this book, we leave the large subject of indi-

vidual organisms’ behavioral ecology and life-

history choices to texts in that field (e.g. Krebs and

Davies, 1997). Instead, we lead with a survey of

work, much of it very recent, on five different

kinds of mechanism whereby cooperative behavior

may be maintained in a population, despite the

inherent difficulty that cheats may prosper by

enjoying the benefits of cooperation without pay-

ing the associated costs.

Cooperation means that a donor pays a cost, c,

for a recipient to get a benefit, b. In evolutionary

biology, cost and benefit are measured in terms of

fitness. While mutation and selection represent the

main forces of evolutionary dynamics, cooperation

is a fundamental principle that is required for

every level of biological organization. Individual

cells rely on cooperation among their components.

Multicellular organisms exist because of coopera-

tion among their cells. Social insects are masters of

cooperation. Most aspects of human society are

based on mechanisms that promote cooperation.

Whenever evolution constructs something entirely

new (such as multicellularity or human language),

cooperation is needed. Evolutionary construction

is based on cooperation.

The five rules for cooperation which we examine

in this chapter are: kin selection, direct reciprocity,

indirect reciprocity, graph selection, and group

selection. Each of these can promote cooperation if

specific conditions are fulfilled.

2.1 Kin selection

The heated conversation took place in an unheated

British pub over some pints of warm bitter. Sud-

denly J.B.S. Haldane remarked, ‘I will jump into

the river to save two brothers or eight cousins.’

The founding father of population genetics and

dedicated communist in his spare time never

bothered to write up this insight. The witness of

the revelation was Haldane’s eager pupil, the

young John Maynard Smith. But given John’s high

regard for entertaining stories and good beer, can

we trust his memory?

The insight that Haldane might have had in the

pub was precisely formulated by William Hamilton.

He wrote a PhD thesis on this topic, submitted a

long paper to the Journal of Theoretical Biology, and

spent much of the next decade in the Brazilian
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jungle. This was arguably themost important paper

in evolutionary biology in the second half of the

twentieth century (Hamilton, 1964a, 1964b, 1998).

The theory was termed kin selection by Maynard

Smith (1964). The crucial equation is the following.

Cooperation among relatives can be favored by

natural selection if the coefficient of genetic relat-

edness, r, between the donor and the recipient

exceeds the cost/benefit ratio of the altruistic act:

r> c=b ð2:1Þ

Kin-selection theory has been tested in numerous

experimental studies. Indeed, many cooperative

acts among animals occur between close kin

(Frank, 1998; Hamilton, 1998). The exact relation-

ship between kin selection and other mechanisms

such as group selection and spatial reciprocity,

however, remains unclear. A recent study even

suggests that much of cooperation in social insects

is due to group selection rather than kin selection

(Wilson and Hölldobler, 2005). Note that kin

selection is more likely to work in quite small

groups; in large groups, unless highly inbred, the

average value of r will be tiny.

2.2 Direct reciprocity

In 1971, Robert Trivers published a landmark

paper entitled ‘The evolution of reciprocal altru-

ism’ (Trivers, 1971). Trivers analyzed the question

how natural selection could lead to cooperation

between unrelated individuals. He discusses three

biological examples: cleaning symbiosis in fish,

warning calls in birds, and human interactions.

Trivers cites Luce and Raiffa (1957) and Rapoport

and Chammah (1965) for the Prisoner’s Dilemma,

which is a game where two players have the

option to cooperate or to defect. If both cooperate

they receive the reward, R. If both defect they

receive the punishment, P. If one cooperates and

the other defects, then the cooperator receives the

sucker’s payoff, S, while the defector receives the

temptation, T. The Prisoner’s Dilemma is defined

by the ranking T>R>P> S.

Would you cooperate or defect? Assuming the

other person will cooperate it is better to defect,

because T>R. Assuming the other person will

defect it is also better to defect, because P> S.

Hence, no matter what the other person will do it

is best to defect. If both players analyze the game

in this rational way then they will end up defect-

ing. The dilemma is that they both could have

received a higher payoff if they had chosen to

cooperate. But cooperation is irrational.

We can also imagine a population of cooperators

and defectors and assume that the payoff for each

player is determined by many random interactions

with others. Let x denote the frequency of coopera-

tors and 1� x the frequency of defectors. The

expected payoff for a cooperator is fC¼Rxþ
S(1� x). The expected payoff for a defector is

fD¼TxþP(1� x). Therefore, for any x, defectors

have a higher payoff than cooperators. In evolu-

tionary game theory, payoff is interpreted as fit-

ness. Successful strategies reproduce faster and

outcompete less successful ones. Reproduction can

be cultural or genetic. In the non-repeated Pris-

oner’s Dilemma, in a well-mixed population,

defectors will outcompete cooperators. Natural

selection favors defectors.

Cooperation becomes an option if the game is

repeated. Suppose there are m rounds. Let us

compare two strategies, always defect (ALLD),

and GRIM, which cooperates on the first move,

then cooperates as long as the opponent coopera-

tes, but permanently switches to defection if the

opponent defects once. The expected payoff for

GRIM versus GRIM is nR. The expected payoff for

ALLD versus GRIM is Tþ (m� 1)P. If nR>Tþ
(m� 1)P then ALLD cannot spread in a GRIM

population when rare. This is an argument of

evolutionary stability. Interestingly, Trivers (1971)

quotes ‘Hamilton (pers. commun.)’ for this idea.

A small problem with the above analysis is that

given a known number of rounds it is best to

defect in the last round and by backwards induc-

tion it is also best to defect in the penultimate

round and so on. Therefore, it is more natural to

consider a repeated game with a probability w of

having another round. In this case, the expected

number of rounds is 1/(1�w), and GRIM is stable

against invasion by ALLD provided w> (T�R)/

(T�P).

We can also formulate the Prisoner’s Dilemma

as follows. The cooperator helps at a cost, c, and
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the other individual receives a benefit, b. Defectors

do not help. Therefore we have T¼ b, R¼ b� c,

P¼ 0, and S¼ � c. The family of games that is

described by the parameters b and c is a subset of

all possible Prisoner’s Dilemma games as long as

b> c. For the repeated Prisoner’s Dilemma, we find

that ALLD cannot invade GRIM if

w> c=b ð2:2Þ

The probability of having another round must

exceed the cost/benefit ratio of the altruistic act

(Axelrod and Hamilton, 1981; Axelrod, 1984).

Notice, however, the implicit assumption here that

the payoff for future rounds is not discounted (i.e.

distant benefits count as much as present ones). In

evolutionary reality, this is unlikely. We can

address this by incorporating an appropriate dis-

count factor in w (May, 1987), but note, from eqn 2,

that this makes cooperation less likely.

Thus, the repeated Prisoner’s Dilemma allows

cooperation, but the question arises: what is a good

strategy for playing this game? This question was

posed by the political scientist, Robert Axelrod. In

1979, he decided to conduct a tournament of

computer programs playing the repeated Prisoner’s

Dilemma. He received 14 entries, of which the

surprise winner was tit-for-tat (TFT), the simplest

of all strategies that were submitted. TFT coopera-

tes in the first move, and then does whatever

the opponent did in the previous round. TFT

cooperates if you cooperate, TFT defects if you

defect. It was submitted by the game theorist

Anatol Rapoport (who is also the co-author of the

book Prisoner’s Dilemma; Rapoport and Chammah,

1965). Axelrod analyzed the events of the tourna-

ment, published a detailed account and invited

people to submit strategies for a second cham-

pionship. This time he received 63 entries. John

Maynard Smith submitted tit-for-two-tats, a var-

iant of TFT which defects only after the opponent

has defected twice in a row. Only one person,

Rapoport, submitted TFT, and it won again. At this

time, TFT was considered to be the undisputed

world champion in the heroic world of the repe-

ated Prisoner’s Dilemma.

But one weakness became apparent very soon

(Molander, 1985). TFT cannot correct mistakes.

The tournaments were conducted without strategic

noise. In a real world, trembling hands and fuzzy

minds cause erroneous moves. If two TFT players

interact with each other, a single mistake leads

to a long sequence of alternating defection and

cooperation. In the long run two TFT players get

the same low payoff as two players who flip coins

for every move in order to decide whether to

cooperate or to defect. Errors destroy TFT.

Our own investigations in this area began after

reading a News and Views article in Nature where

the author made three important points: first, he

often leaves university meetings with a renewed

appreciation for the problem of how natural

selection can favor cooperative acts given that

selfish individuals gain from cheating; second,

strategies in the repeated Prisoner’s Dilemma

should not be error-free but subjected to noise;

third, evolutionary stability should be tested not

against single invaders but against heterogeneous

ensembles of invaders (May, 1987). This was the

motivation for the following work.

In 1989, we conducted evolutionary tourna-

ments. Instead of inviting experts to submit pro-

grams, we asked mutation and selection to explore

(some portion of) the strategy space of the repe-

ated Prisoner’s Dilemma in the presence of noise.

The initial random ensemble of strategies was

quickly dominated by ALLD. If the opposition is

random, it is best to defect. A large portion of the

population began to adopt the ALLD strategy and

everything seemed lost. But after some time, a

small cluster of players adopted a strategy very

close to TFT. If this cluster is sufficiently large,

then it can increase in abundance, and the entire

population swings from ALLD to TFT. Reciprocity

(and therefore cooperation) has emerged. We can

show that TFT is the best catalyst for the emer-

gence of cooperation. But TFT’s moment of glory

was brief and fleeting. In all cases, TFT was rapidly

replaced by another strategy. On close inspection,

this strategy turned out to be generous tit-for-tat

(GTFT), which always cooperates if the opponent

has cooperated on the previous move, but some-

times (probabilistically) even cooperates when the

opponent has defected. Natural selection had dis-

covered forgiveness (Nowak and Sigmund, 1992).
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After many generations, however, GTFT is

undermined by unconditional cooperators, ALLC.

In a society where everybody is nice (using GTFT),

there is almost no need to remember how to

retaliate against a defection. A biological trait that

is not used is likely to be lost by random drift.

Birds that escape to islands without predators lose

the ability to fly. Similarly, a GTFT population is

softened and turns into an ALLC population.

Once most people play ALLC, there is an open

invitation for ALLD to seize power. This is pre-

cisely what happens. The evolutionary dynamics

run in cycles: from ALLD to TFT to GTFT to ALLC

and back to ALLD. These oscillations of coopera-

tive and defective societies are a fundamental part

of all our observations regarding the evolution of

cooperation. Most models of cooperation show

such oscillations. Cooperation is never a final state

of evolutionary dynamics. Instead it is always lost

to defection after some time and has to be

re-established. These oscillations are also reminis-

cent of alternating episodes of war and peace in

human history (Figure 2.1).

A subsequent set of simulations, exploring a

larger strategy space, led to a surprise (Nowak and

Sigmund, 1993). The fundamental oscillations were

interrupted by another strategy which seems to be

able to hold its ground for a very long period of

time. Most surprisingly, this strategy is based on

the extremely simple principle of win-stay, lose-

shift (WSLS). If my payoff is R or T then I will

continue with the same move next round. If I have

cooperated then I will cooperate again, if I have

defected then I will defect again. If my payoff is

only S or P then I will switch to the other move

next round. If I have cooperated then I will defect,

if I have defected then I will cooperate (Figure 2.2).

If two WSLS strategists play each other, they

cooperate most of the time. If a defection occurs

accidentally, then in the next move both will

defect. Hereafter both will cooperate again. WSLS

is a simple deterministic machine to correct sto-

chastic noise. While TFT cannot correct mistakes,

both GTFT and WSLS can. But WSLS has an

additional ace in its hand. When WSLS plays

ALLC it will discover after some time that ALLC

does not retaliate. After an accidental defection,

WSLS will switch to permanent defection. There-

fore, a population of WSLS players does not drift to

ALLC. Cooperation based on WSLS is more stable

than cooperation based on TFT-like strategies.

Tit-for-tat Generous tit-for-tat

Always cooperateAlways defect

Win-stay, lose-shift 

Figure 2.1 Evolutionary cycles of cooperation and defection. A
small cluster of tit-for-tat (TFT) players or even a lineage starting from
a single TFT player in a finite population can invade an always defect
(ALLD) population. In fact, TFT is the most efficient catalyst for the
first emergence of cooperation in an ALLD population. But in a world
of fuzzy minds and trembling hands, TFT is soon replaced by generous
tit-for-tat (GTFT), which can re-establish cooperation after occasional
mistakes. If everybody uses GTFT, then always cooperate (ALLC) is a
neutral variant. Random drift leads to ALLC. An ALLC population
invites invasion by ALLD. But ALLC is also dominated by win-stay,
lose-shift (WSLS), which leads to more stable cooperation than TFT-
like strategies.

C C

D D

Lose-shift

C (0) …. D D (1) …. C  (probabilistic)

Win-stay

C (3) …. C D (5) …. D

Figure 2.2 Win-stay, lose-shift (WSLS) embodies a very simple
principle. If you do well then continue with what you are doing. If you
are not doing well, then try something else. Here we consider the
Prisoner’s Dilemma payoff values R¼ 3, T¼ 5, P¼ 1, and S¼ 0. If
both players cooperate, you receive three points, and you continue to
cooperate. If you defect against a cooperator, you receive five points,
and you continue to defect. But if you cooperate with a defector, you
receive no points, and therefore you will switch from cooperation to
defection. If, on the other hand, you defect against a defector, you
receive one point, and you will switch to cooperation. Your aspiration
level is three points. If you get at least three points then you consider
it a win and you will stay with your current choice. If you get less
than three points, you consider it a loss and you will shift to another
move. If R> (Tþ P)/2 (or b/c> 2) then WSLS is stable against
invasion by ALLD. If this inequality does not hold, then our evolu-
tionary simulations lead to a stochastic variant of WSLS, which
cooperates after a DD move only with a certain probability. This
stochastic variant of WSLS is then stable against invasion by ALLD.
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The repeated Prisoner’s Dilemma is mostly known

as a story of TFT, but WSLS is a superior strategy

in an evolutionary scenario with errors, mutation,

and many generations (Fudenberg and Maskin,

1990; Nowak and Sigmund, 1993).

Incidentally, WSLS is stable against invasion by

ALLD if b/c> 2. If instead 1< b/c< 2 then a sto-

chastic variant of WSLS dominates the scene; this

strategy cooperates after a mutual defection only

with a certain probability. Of course, all strategies

of direct reciprocity, such as TFT, GTFT, or WSLS

can only lead to the evolution of cooperation if the

fundamental inequality (eqn 2) is fulfilled.

2.3 Indirect reciprocity

Whereas direct reciprocity embodies the idea of

you scratch my back and I scratch yours, indirect

reciprocity suggests that you scratch my back and

I scratch someone else’s. Why should this work?

Presumably I will not get scratched if it becomes

known that I scratch nobody. Indirect reciprocity,

in this view, is based on reputation (Nowak and

Sigmund, 1998a, 1998b, 2005). But why should you

care about what I do to a third person?

The main reason why economists and social

scientists are interested in indirect reciprocity is

because one-shot interactions between anonymous

partners in a global market become increasingly

frequent and tend to replace the traditional long-

lasting associations and long-term interactions

between relatives, neighbors, or members of the

same village. Again, as for kin selection, it is a

question of the size of the group. A substantial part

of our life is spent in the company of strangers,

and many transactions are no longer face to face.

The growth of online auctions and other forms of

e-commerce is based, to a considerable degree, on

reputation and trust. The possibility to exploit such

trust raises what economists call moral hazards.

How effective is reputation, especially if informa-

tion is only partial?

Evolutionary biologists, on the other hand, are

interested in the emergence of human societies,

which constitutes the last (up to now) of the major

transitions in evolution. In contrast to other euso-

cial species, such as bees, ants, or termites, humans

display a large amount of cooperation between

non-relatives (Fehr and Fischbacher, 2003).

A considerable part of human cooperation is based

on moralistic emotions, such as anger directed

towards cheaters or the warm inner glow felt after

performing an altruistic action. Intriguingly,

humans not only feel strongly about interactions

that involve them directly, they also judge actions

between third parties as evidenced by the contents

of gossip. There are numerous experimental stu-

dies of indirect reciprocity based on reputation

(Wedekind and Milinski, 2000; Milinski et al., 2002;

Wedekind and Braithwaite, 2002; Seinen and

Schram, 2006).

A simple model of indirect reciprocity (Nowak

and Sigmund, 1998a, 1998b) assumes that within a

well-mixed population, individuals meet ran-

domly, one in the role of the potential donor, the

other as potential recipient. Each individual

experiences several rounds of this interaction in

both roles, but never with the same partner twice.

A player can follow either an unconditional strat-

egy, such as always cooperate or always defect, or

a conditional strategy, which discriminates among

the potential recipients according to their past

interactions. In a simple example, a discriminating

donor helps a recipient if her score exceeds a

certain threshold. A player’s score is 0 at birth,

increases whenever that player helps and decrea-

ses whenever the player withholds help. Indivi-

dual-based simulations and direct calculations

show that cooperation based on indirect reci-

procity can evolve provided the probability, p, of

knowing the social score of another person exceeds

the cost/benefit ratio of the altruistic act:

p > c=b ð2:3Þ

The role of genetic relatedness that is crucial for

kin selection is replaced by social acquaintance-

ship. In a fluid population, where most inter-

actions are anonymous and people have no

possibility of monitoring the social score of others,

indirect reciprocity has no chance. But in a socially

viscous population, where people know each other’s

reputation, cooperation by indirect reciprocity

can thrive (Nowak and Sigmund, 1998a).

In a world of binary moral judgements (Nowak

and Sigmund, 1998b; Leimar and Hammerstein,
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2001; Fishman, 2003; Panchanathan and Boyd,

2003; Brandt and Sigmund, 2004, 2005), there are

four ways of assessing donors in terms of first-

order assessment: always consider them as good,

always consider them as bad, consider them as

good if they refuse to give, or consider them as

good if they give. Only this last option makes

sense. Second-order assessment also depends on

the score of the receiver; for example, it can be

deemed good to refuse help to a bad person. There

are 16 second-order rules. Third-order assessment

also depends on the score of the donor; for

example, a good person refusing to help a bad

person may remain good, but a bad person refus-

ing to help a bad person remains bad. There are

256 third-order assessment rules. We display four

of them in Figure 2.3.

With the scoring assessment rule, cooperation,

C, always leads to a good reputation, G, whereas

defection, D, always leads to a bad reputation, B.

Standing (Sugden, 1986) is like scoring, but it is not

bad if a good donor defects against a bad recipient.

With judging, in addition, it is bad to cooperatewitha

bad recipient. For another assessment rule, shunning,

all donors who meet a bad recipient become bad,

regardless of what action they choose. Shunning

strikes us as grossly unfair, but it emerges as the

winner in a computer tournament if errors in per-

ception are included and if there are only a few

rounds in the game (Takahashi and Mashima, 2003).

An action rule for indirect reciprocity prescribes

giving or not giving, depending on the scores of

both donor and recipient. For example, you may

decide to help if the recipient’s score is good or

your own score is bad. Such an action might

increase your own score and therefore increase

the chance of receiving help in the future. There

are 16 action rules.

If we view a strategy as the combination of an

action rule and an assessment rule, we obtain 4096

strategies. In a remarkable calculation, Ohtsuki

and Iwasa (2004, 2005) analyzed all 4096 strategies

and proved that only eight of them are evolutio-

narily stable under certain conditions and lead to

cooperation (Figure 2.4).

Both standing and judging belong to the leading

eight, but scoring and shunning are not. However,

we expect that scoring has a similar role in indirect

reciprocity to that of TFT in direct reciprocity.

Neither strategy is evolutionarily stable, but their

simplicity and their ability to catalyze cooperation

in adverse situations constitute their strength. In

extended versions of indirect reciprocity, in which

donors can sometimes deceive others about the

reputation of the recipient, scoring is the foolproof

concept of ‘I believe what I see’. Scoring judges

the action and ignores the stories. There is also

experimental evidence that in certain situations

humans follow scoring rather than standing

(Milinski et al., 2001).

In human evolution, there must have been a

tendency to move from the simple cooperation

promoted by kin or group selection to the strategic

subtleties of direct and indirect reciprocity. Direct

reciprocity requires precise recognition of indivi-

dual people, a memory of the various interactions

one had with them in the past, and enough brain

Reputation of donor and recipient

Reputation of donor 
after the action 

Scoring

Standing

Judging

Shunning

A
ct

io
n 

of
 d

on
or

GG

C G G G G

D B B B B

C G G G G

D B G B B

C G B G B

D B G B B

C G B G B

D B B B B

GB BG BB

Figure 2.3 Four assessment rules. Assessment rules specify how an
observer judges an interaction between a potential donor and a
recipient. Here we show four examples of assessment rules in a world
of binary reputation, good (G) and bad (B). For scoring, cooperation
(C) earns a good reputation and defection (D) earns a bad reputation.
Standing is very similar to scoring; the only difference is that a good
donor can defect against a bad recipient without losing his good
reputation. Note that scoring is associated with costly punishment
(Sigmund et al., 2001; Fehr and Gaechter, 2002), whereas for
standing punishment of bad recipients is cost-free. For judging it is
bad to help a bad recipient. Shunning assigns a bad reputation to any
donor who interacts with a bad recipient.
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power to conduct multiple repeated games

simultaneously. Indirect reciprocity, in addition,

requires the individual to monitor interactions

among other people, possibly judge the intentions

that occur in such interactions, and keep up with

the ever-changing social network of the group.

Reputation of players may not only be determined

by their own actions, but also by their associations

with others.

We expect that indirect reciprocity has

coevolved with human language. On the one hand,

it is helpful to have names for other people and to

receive information about how a person is per-

ceived by others. On the other hand a complex

language is needed, especially if there are intricate

social interactions. The possibilities for games of

manipulation, deceit, cooperation, and defection

are limitless. It is likely that indirect reciprocity has

provided the very selective scenario that led to

cerebral expansion in human evolution.

2.4 Graph selection

The traditional model of evolutionary game

dynamics assumes that populations are well-

mixed (Taylor and Jonker, 1978; Hofbauer and

Sigmund, 1998). This means that interactions

between any two players are equally likely. More

realistically, however, the interactions between

individuals are governed by spatial effects or

social networks. Let us therefore assume that the

individuals of a population occupy the vertices of

a graph (Nakamaru et al., 1997, 1998; Skyrms and

Pemantle, 2000; Abramson and Kuperman, 2001;

Ebel and Bornholdt, 2002; Lieberman et al., 2005;

Nakamaru and Iwasa, 2005; Santos et al., 2005;

Santos and Pacheco, 2005). The edges of the graph

determine who interacts with whom (Figure 2.5).

Consider a population of N individuals consist-

ing of cooperators and defectors. A cooperator

helps all individuals to whom it is connected, and

pays a cost, c. If a cooperator is connected to k

other individuals and i of those are cooperators,

then its payoff is bi� ck. A defector does not pro-

vide any help, and therefore has no costs, but it

GG GB BG BB

C

D

G

B

C D C C/D

BG

* *

*

G
Assessment

Action

If a good donor meets a bad recipient, 
the donor must defect, and this action does  
not reduce his reputation.

* can be set as G or B. 

If a column in the assessment module is 
then the action must be C, otherwise D. 

G
B

Figure 2.4 Ohtsuki and Iwasa’s leading eight. Ohtsuki and Iwasa
(2004, 2005) have analyzed the combination of 28¼ 256 assessment
modules with 24¼ 16 action modules. This is a total of 4096
strategies. They have found that eight of these strategies can be
evolutionarily stable and lead to cooperation, provided that everybody
agrees on each other’s reputation. (In general, uncertainty and
incomplete information might lead to private lists of the reputation of
others.) The three asterisks in the assessment module indicate a free
choice between G and B. There are therefore 23¼ 8 different
assessment rules which make up the leading eight. The action module
is built as follows: if the column in the assessment module is G and B,
then the corresponding action is C, otherwise the action is D. Note
that standing and judging are members of the leading eight, but that
scoring and shunning are not.

C
C

C

C

C

D
D

D

D

D

2b – 5c
2b – 2c

2b – 3c

b b

b

Figure 2.5 Games on graphs. The members of a population occupy
the vertices of a graph (or social network). The edges denote who
interacts with whom. Here we consider the specific example of
cooperators, C, competing with defectors, D. A cooperator pays a
cost, c, for every link. Each neighbor of a cooperator receives a
benefit, b. The payoffs of some individuals are indicated in the figure.
The fitness of each individual is a constant, denoting the baseline
fitness, plus the payoff of the game. For evolutionary dynamics, we
assume that in each round a random player is chosen to die, and the
neighbors compete for the empty site proportional to their fitness. A
simple rule emerges: if b/c> k then selection favors cooperators over
defectors. Here k is the average number of neighbors per individual.
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can receive the benefit from neighboring coopera-

tors. If a defector is connected to k other indivi-

duals and j of those are cooperators, then its payoff

is bj. Evolutionary dynamics are described by an

extremely simple stochastic process: at each time

step, a random individual adopts the strategy of

one of its neighbors proportional to their fitness.

We note that stochastic evolutionary game

dynamics in finite populations is sensitive to the

intensity of selection. In general, the reproductive

success (fitness) of an individual is given by a

constant, denoting the baseline fitness, plus the

payoff that arises from the game under con-

sideration. Strong selection means that the payoff

is large compared with the baseline fitness; weak

selection means the payoff is small compared with

the baseline fitness. It turns out that many inter-

esting results can be proven for weak selection,

which is an observation also well known in

population genetics.

The traditional, well-mixed population of evo-

lutionary game theory is represented by the com-

plete graph, where all vertices are connected,

which means that all individuals interact equally

often. In this special situation, cooperators are

always opposed by natural selection. This is the

fundamental intuition of classical evolutionary

game theory. But what happens on other graphs?

We need to calculate the probability, rC, that a
single cooperator starting in a random position

turns the whole population from defectors into

cooperators. If selection neither favors nor opposes

cooperation, then this probability is 1/N, which is

the fixation probability of a neutral mutant. If the

fixation probability rC is greater than 1/N, then

selection favors the emergence of cooperation.

Similarly, we can calculate the fixation probability

of defectors, rD. A surprisingly simple rule deter-

mines whether selection on graphs favors coopera-

tion. If

b=c> k ð2:4Þ

then cooperators have a fixation probability of

greater than 1/N and defectors have a fixation

probability of less than 1/N. Thus, for graph

selection to favor cooperation, the benefit/cost

ratio of the altruistic act must exceed the average

degree, k, which is given by the average number of

links per individual (Ohtsuki et al., 2006). This

relationship can be shown with the method of

pair-approximation for regular graphs, where all

individuals have exactly the same number of

neighbors. Regular graphs include cycles, all kinds

of spatial lattice, and random regular graphs.

Moreover, computer simulations suggest that the

rule b/c> k also holds for non-regular graphs such

as random graphs and scale-free networks. The

rule holds in the limit of weak selection and k<<N.

For the complete graph, k¼N, we always have

rD> 1/N> rC. Preliminary studies suggest that

eqn 2.4 also tends to hold for strong selection. The

basic idea is that natural selection on graphs (in

structured populations) can favor unconditional

cooperation without any need for strategic com-

plexity, reputation, or kin selection.

Games on graphs grew out of the earlier tradi-

tion of spatial evolutionary game theory (Nowak

and May, 1992; Herz, 1994; Killingback and

Doebeli, 1996; Mitteldorf and Wilson, 2000; Hauert

et al., 2002; Le Galliard et al., 2003; Hauert and

Doebeli, 2004; Szabó and Vukov, 2004) and inves-

tigations of spatial models in ecology (Durrett and

Levin, 1994a, 1994b; Hassell et al., 1994; Tilman and

Kareiva, 1997; Neuhauser, 2001) and spatial mod-

els in population genetics (Wright, 1931; Fisher

and Ford, 1950; Maruyama, 1970; Slatkin, 1981;

Barton, 1993; Pulliam, 1988; Whitlock, 2003).

2.5 Group selection

The enthusiastic approach of early group selec-

tionists to explain all evolution of cooperation

from this one perspective (Wynne-Edwards, 1962)

has met with vigorous criticism (Williams, 1966)

and even a denial of group selection for decades.

Only an embattled minority of scientists defended

the approach (Eshel, 1972; Wilson, 1975; Matessi

and Jayakar, 1976; Wade, 1976; Uyenoyama and

Feldman, 1980; Slatkin, 1981; Leigh, 1983;

Szathmary and Demeter, 1987). Nowadays it

seems clear that group selection can be a powerful

mechanism to promote cooperation (Sober and

Wilson, 1998; Keller, 1999; Michod, 1999; Swenson

et al., 2000; Kerr and Godfrey-Smith, 2002; Paulsson,

2002; Boyd and Richerson, 2002; Bowles and
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Gintis, 2004; Traulsen et al., 2005). We only have to

make sure that its basic requirements are fulfilled

in a particular situation (Maynard Smith, 1976).

Exactly what these requirements are can be illu-

strated with a simple model (Traulsen and Nowak,

2006).

Imagine a population of individuals subdivided

into groups. For simplicity, we assume that the

number of groups is constant and given by m. Each

group contains between 1 and n individuals. The

total population size can fluctuate between the

bounds m and nm. Again, there are two types of

individual, cooperators and defectors. Individuals

interact with others in their group and thereby

receive a payoff. At each time step a random

individual from the entire population is chosen

proportional to payoff in order to reproduce. The

offspring is added to the same group. If the group

size is less than or equal to n then nothing else

happens. If the group size, however, exceeds n

then with probability q the group splits into two.

In this case, a random group is eliminated (in

order to maintain a constant number of groups).

With probability 1� q, the group does not divide,

but instead a random individual from that group is

eliminated (Figure 2.6).

This minimalist model of multilevel selection

has some interesting features. Note that the evo-

lutionary dynamics are entirely driven by indivi-

dual fitness. Only individuals are assigned payoff

values. Only individuals reproduce. Groups can

stay together or split (divide) when reaching a

certain size. Groups that contain fitter individuals

reach the critical size faster and therefore split

more often. This concept leads to selection among

groups, although only individuals reproduce. The

higher level selection emerges from lower level

reproduction. Remarkably, the two levels of

selection can oppose each other.

As before, we can compute the fixation prob-

abilities, rC and rD, of cooperators and defectors to

check whether selection favors one or the other. If

we add a single cooperator to a population of

defectors, then this cooperator must first take over

a group. Subsequently the group of cooperators

must take over the entire population. The first step

is opposed by selection, the second step is favored

by selection. Hence, we need to find out if the

overall fixation probability is greater to or less than

what we would obtain for a neutral mutant. An

analytic calculation is possible in the interesting

limit q<< 1, where individuals reproduce much

more rapidly than groups divide. In this case, most

of the groups are at their maximum size and hence

the total population size is almost constant and

given by N¼ nm. We find that selection favors

cooperators and opposes defectors, rC> 1/N> rD,
if

b=c> 1þ n=ðm� 2Þ ð2:5aÞ

This result holds for weak selection. Smaller group

sizes and larger numbers of competing groups

favor cooperation. We also notice that the number

of groups, m, must exceed 2. There is an intuitive

reason for this threshold. Consider the case of

m¼ 2 groups with n¼ 2 individuals. In a mixed

group, the cooperator has payoff � c and the

defector has payoff b; the defector/cooperator

difference is bþ c. In a homogeneous group, two

cooperators have payoff b� c, while two defectors

C C

CD
D

D

D

D

C D

C C
C

Figure 2.6 A simple model of group selection. A population
consists of m groups of maximum size n. Individuals interact with
others in their group in the context of an evolutionary game. Here we
consider the game between cooperators, C, and defectors, D. For
reproduction, individuals are chosen from the entire population with
a probability proportional to their payoff. The offspring is added to
the same group. If a group reaches the maximum size, n, then it
either splits in two or a random individual from that group is
eliminated. If a group splits, then a random group dies, in order to
keep the total population size constant. This metapopulation
structure leads to the emergence of two levels of selection, although
only individuals reproduce.
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have a payoff of 0. Thus the disadvantage for

cooperators in mixed groups cannot be compen-

sated for by the advantage they have in homo-

geneous groups. Interestingly, however, for larger

splitting probabilities, q, we find that cooperators

can be favored even for m¼ 2 groups. The reason

is the following: for very small q, the initial

cooperator must reach fixation in a mixed group;

but for larger q, a homogeneous cooperator group

can also emerge if a mixed group splits, giving rise

to a daughter group that has only cooperators.

Thus, larger splitting probabilities make it easier

for cooperation to emerge.

Let us also consider the effect of migration

between groups. The average number of migrants

accepted by a group during its lifetime is denoted

by z. We find that selection favors cooperation

provided that

b=c> 1þ zþ n=m ð2:5bÞ

In order to derive this condition we have assumed

weak selection and q<< 1, as before, but also that

both the numbers of groups, m, and the maximum

group size, n, are much larger than 1.

Group selection (or multilevel selection) is a

powerful mechanism for the evolution of coop-

eration if there is a large number of relatively small

groups and migration between groups is not too

frequent.

2.6 Conclusion

Weendby listing the five rules thatwementioned in

the beginning. These rules represent laws of nature

governing the natural selection of cooperation.

1. Kin selection leads to cooperation if b/c> 1/r,

where r is the coefficient of genetic relatedness

between donor and recipient.

2. Direct reciprocity leads to cooperation if

b/c> 1/w, where w is the probability of playing

another round in the repeated Prisoner’s Dilemma.

3. Indirect reciprocity leads to cooperation if

b/c> 1/q, where q is the probability of knowing

the reputation of a recipient.

4. Graph selection (or network reciprocity) leads to

cooperation if b/c> k, where k is the degree of the

graph; that is, the average number of neighbors.

5. Group selection leads to cooperation if

b/c> 1þ zþ n/m, where z is the number of mig-

rants accepted by a group during its lifetime, n is

the group size, and m is the number of groups.

In all five theories, b is the benefit for the recipient

and c the cost for the donor of an altruistic act.
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