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There exists an established body of ecological theory for

the population dynamics of large organisms, such as plants

and animals. But whether these theories also apply to the

dynamics of microorganisms is largely unknown, yet

seldom questioned [17]. Compared to large organisms, bac-

teria not only differ greatly in the small physical size and

high growth rate, but also in the drastic changes of popu-

lation size. These differences are most profound during

neonatal host development, while the microbiota establish.

There has been comparably little theoretical development

regarding the interaction dynamics of size fluctuating bac-

terial populations [23,24]. A recent study showed that

microbiota colonization patterns during host development

display complex dynamics, which cannot be explained with

standard models of density independent competition [25].

This study also showed that the microbiota composition in

fresh water Hydra hatchlings changed greatly during devel-

opment. A highly variable initial stage was followed by a

transient adult-like phase in which the microbial composition

was temporarily very similar to the stable adult microbiota,

yet only retained for a short time. The adult microbiota com-

position only reappear after further drastic changes.

Remarkably, a similar ‘in-out-in’ colonization pattern of

adult-like microbiota composition was also observed in

human infants [26].

Even more interestingly, the complex microbiota in Hydra
prevents infection by the filamentous fungus Fusarium sp.

[11]. Using a germ-free Hydra model, it was shown that

germ-free polyps were highly susceptible to fungal infection,

while restoring the complex microbiota in gnotobiotic polyps

prevented infection. Testing single bacterial isolates from

Hydra in mono-associations revealed that none of the tested

bacterial colonizers alone was able to provide full anti-

fungal resistance. By contrast, resistance, as observed in con-

trol polyps, was achieved in polyps di-associated with the

two most dominant bacterial colonizers, Curvibacter sp. and

Duganella sp., by exhibiting a strong synergistic effect [11].

This finding provides compelling evidence for the impor-

tance of bacteria–bacteria interactions in the normal

functioning of Hydra-associated microbiota.

Besides empirical evidence, ecological theories are indis-

pensable to our understanding of the full complexity in

host–microbiota interplay. Evolutionary game theory takes its

root in classic game theory but focuses on the frequency

dynamics of strategies in populations instead of the quality of

competing strategies themselves. Therefore, it is especially

suited for studying microbial population dynamics on the eco-

logical timescale, where the fitness landscapes of different

types are constantly changing [27], and thus selection is fre-

quency dependent [28–30]. In the case of deterministic

dynamics, there exists a strong link between game dynamics

and ecological dynamics. The game theoretical replicator

equation is mathematically closely related to the ecological

Lotka–Volterra equation with linear growth rates [31]. The repli-

cator equation focuses on relative changes in population size

under frequency-dependent fitness, which can provide concep-

tual insights into the microscopic interactions between

individual bacteria cells. The Lotka–Volterra equation describes

populations of changing size. Therefore, it can be conveniently

linked to experiments [32–34]. In the case of two interacting

species, replicator dynamics and the competitive Lotka–Volterra

equations predict competitive exclusion, i.e. extinction of one

type, or coexistence at a unique state of population composition.
Considering the classic Lotka–Volterra equation as the

potential framework to understand bacterial interaction reveals

limitations in modelling the population dynamics of the two

most abundant bacterial species that interact synergistically to

protect the Hydra host from pathogenic infection. We show

that the patterns observed in our experiments require a more

detailed consideration of bacteria–bacteria interactions. This

includes growth rates that nonlinearly depend on the relative

abundance of different species in the exponential growth phase.

Compared to human and other more complex model

species, the early metazoan Hydra provides a comparably

simple system with a genetically determined bacterial com-

munity colonizing the surface of the ectodermal epithelium

[35]. Therefore, it serves as a powerful model organism for

studying the interactions between the host and its bacterial

community [36,37]. In addition, the synergistic interaction

between the two dominant bacteria species is especially excit-

ing. It provides anti-fungal protection to the host that cannot

be achieved by either of the bacteria when associated with the

host alone [11]. In a first attempt to quantitatively understand

the host–microbial interaction, here we determine the mech-

anisms of bacterial interactions without the host’s influence.

We performed double culture experiments in vitro with the

two most abundant actors in the Hydra microbiota. In order

to develop a mathematical model for this scenario, here

we propose general principles governing the interactions

within the microbiota. We start by adding frequency-

dependent growth rates into the Lotka–Volterra framework

and infer the possible dynamics for linear and quadratic

frequency-dependent growth rates, and then put these results

into the context of our empirical data. These data suggest inter-

actions between multiple players as one possible mechanism of

the interactions among individual bacterial cells, which can

lead to global population dynamics qualitatively similar to

those observed in our experiments.
2. Material and methods
We study the interactions between the two species of Betaproteo-

bacteria Curvibacter sp. AEP1.3 (C) and Duganella sp. C1.2 (D).

Both bacteria belong to the order of Burkholderiales, while C rep-

resents a Comamonadaceae and D an Oxalobacteraceae [11]. We

chose these two bacteria because (i) they are naturally found in

the bacterial community of the freshwater polyp Hydra vulgaris
(AEP) and are the two most abundant species in the microbiota

(C: 75.6% and D: 11.1%) [11]; (ii) the synergistic interaction

between the two bacteria species effectively provides anti-fungal

protection for the host [11]; and (iii) the morphology of their

colonies can be distinguished from each other on agar plates.

2.1. Monoculture and double culture experiments
To determine the growth rate in monocultures, we inoculated for

each bacterium 50 ml R2A medium with 10 concentrations

between 2.0 � 103 and 1.0 � 105 cfu ml– 1 of C or D of an over-

night culture. The cell numbers of each bacteria were estimated

by counting the colony forming units (cfu) and were cross-

checked with optical density (OD) measurements at OD600 ¼

0.1 (1.0 � 108 cfu ml– 1 for C and 2.0 � 107 cfu ml– 1 for D). In

double culture experiments, we kept a total initial concentration

of 1.0 � 105 cfu ml– 1 and applied a gradient of different initial

frequencies of species C and D. Over the course of 3 days,

three times a day, we measured the OD600 of the cultures and

plated two dilutions, which were adjusted individually to the

OD, on R2A agar plates. After 2 days, we counted the number

http://rsif.royalsocietypublishing.org/


dilution 1 dilution 2

af
te

r
2

da
ys

af
te

r
4

da
ys

Figure 1. We quantify the density of Curvibacter sp. and Duganella sp. by the method of counting colony forming units (cfu). At each time point, we took a sample of
the bacterial culture and performed a series of dilutions. The diluted samples were then plated on a Petri dish with solid agar medium. After 2 days, the fast-growing
Duganella sp. (indicated by cyan arrows) already formed clear and distinct colonies on the plates. After 4 days, the slow-growing Curvibacter sp. (indicated by green
arrows) also formed distinct colonies. Under the assumption that one colony was formed by one single founder cell in the medium, we can calculate the cell densities of
each of the two bacteria species in the original sample by adjusting the numbers of colonies with corresponding dilution factors.
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of colonies of D and after 4 days those of C. This difference in

counting times was due to different growth rates of the two

bacteria on agar plates (figure 1).
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Figure 2. Change in the frequency of Curvibacter sp. in double cultures with
Duganella sp. The frequency of Curvibacter sp. approaches the 0 or 1 bound-
aries over time, depending on the initial frequency of both types. If the
culture was inoculated with a high frequency of Curvibacter sp., the frequency
of it remains high (green trajectories), otherwise Duganella sp. quickly out-
grows and eventually pushes the frequency of Curvibacter sp. towards 0 (blue
trajectories). This resembles the dynamics in a coordination game, where the
two homogeneous populations are stable.
2.2. Data preparation and analysis
For cell culture growth over time in both monocultures and

double cultures, we calculated growth rate functions by applying

a linear regression to the log-linear transformed data. The good-

ness of fit was calculated using the (adjusted) R2 [38,39]. In

monoculture experiments for both species, we tested the depen-

dency of growth rate in the exponential growth phase on a

gradient of initial cell densities.

In double culture experiments for both species, we tested

linear, quadratic and cubic functions of growth rate on a gradient

of initial frequencies. These three different model hypotheses

were then compared using Akaike information criterion (AIC)

[40] and Bayesian information criterion (BIC) [41,42], based on

the likelihood functions of a normally distributed error term in

the linear regression model. The most appropriate models were

chosen with the agreement between both AIC and BIC tests.

In double culture experiments, if the cell density value was

missing for one of the species at a certain point in time during

the exponential growth phase, this data point was excluded

when plotting the growth trajectories. But the cell density of

the species that did have a valid count can still be used for

calculating the growth rate.
3. Mathematical model
Our mathematical model is directly motivated by experimental

observations. We analysed the growth trajectories of the

double culture experiments of Curvibacter sp. (C) and

http://rsif.royalsocietypublishing.org/


rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:2015012

4

 on June 19, 2015http://rsif.royalsocietypublishing.org/Downloaded from 
Duganella sp. (D), the two most abundant species that interact

synergistically to protect the Hydra host from fungal infection.

Depending on the initial condition, one of the two species

eventually becomes dominant in frequency (figure 2). This

resembles a coordination game [43], which is characterized

by an unstable intermediate fixed point and two stable bound-

ary fixed points. However, the submissive species does not go

extinct but keeps growing in absolute density. This is a key fea-

ture, which is usually neglected in game theoretic models

where only changes in frequency, fixation and respective

extinction are considered.

Based on these experimental findings, we propose a

mathematical model building on the classic Lotka–Volterra

competition dynamics, which is mathematically closely related

to the replicator equation in game theory models [31]. In our

model, the maximum growth rates in the exponential growth

phase of the bacterial culture are frequency dependent. This

model of in vitro bacterial interactions in growing populations

serves as a basis for making comparisons with the in vivo
scenarios influenced by the host.
1

3.1. Lotka – Volterra competition model with linear
frequency-dependent growth rates

The population dynamics in two-species Lotka–Volterra

competition models has been thoroughly discussed in text-

books [32,33]. Those models assume that the two species

only compete for the same limited resources, e.g. the same

food, or space with unrestricted nutrient provision, or terri-

tory which is directly related to food resources, but the two

species do not interact otherwise. Then the dynamics are

given by the following growth equations:

_C ¼ rC �
rC

KC
C� rD

KC
D

� �
C

and _D ¼ rD �
rD

KD
D� rC

KD
C

� �
D:

9>>>=
>>>;

(3:1)

Both species exhibit logistic growth when cultured

alone. The value of growth rates r and carrying capacities

K are positive constants. Equations (3.1) predict that

the two species can coexist only when exactly rCKC ¼

rDKD. Otherwise, the species with higher rK value

wins the competition, and the other species goes extinct

(competitive exclusion).

We depart from this simple case and consider the case

where growth rates rC and rD are frequency-dependent

linear functions. The frequency of C is denoted as x (x ¼ C/

(C þ D)), and the frequency of D is thus 1 2 x, in the

double culture system. Therefore, rC and rD can be written

as linear functions of x

rC(x) ¼ g0 þ g1x
and rD(x) ¼ d0 þ d1x:

)
(3:2)

Since the growth rates rC and rD are the maximum growth

rates reached at the exponential growth phase, they are

always positive. Consequently, we require g0, d0, g0 þ g1,

and d0 þ d1 to be positive. Then the population dynamics is

described by a set of modified Lotka–Volterra equations,

with linear frequency-dependent growth rates and interaction

coefficients. This is equivalent to logistic growth functions

with frequency-dependent competition coefficients. In the
following, we assume constant carrying capacity for both

species, KC ¼ KD ¼ K. For constant and linear growth rates,

it is straightforward to generalize our findings to KC = KD.

There are four steady states—three boundary cases (0, 0),

(0, K ), (K, 0), and the mixed solution:

(C�, D�) ¼ d0 � g0

g1 � d1
K,

g0 � d0 þ g1 � d1

g1 � d1
K

� �
: (3:3)

The mixed solution is only biologically meaningful if 0 , C*,

D* , 1. The relation C* . 0 implies that the growth rates

of the two species have to intersect at an intermediate

frequency. For the overall dynamics, there are four qualitatively

different cases, as illustrated in figure 3.

The set of points C þ D ¼ K satisfy the condition Ċ þ Ḋ ¼ 0;

therefore, it is an invariant manifold [31,44] of the dynamics.

Once this invariant manifold has been reached, the population

dynamics will not lead away from it. Let f ¼ jC0 þ D0 –Kj be

the distance from any point (C0, D0) on the plane spanned by

C and D to this invariant manifold. This distance decreases

monotonically regardless of the initial condition (C0, D0) off

the C þ D ¼ K manifold

_f ¼ C0 þD0 � K
jC0 þD0 � Kj (

_C0 þ _D0)

¼ �jC0 þD0 � Kj rC(x)
C0

K
þ rD(x)

D0

K

� �
, 0: (3:4)

Note that this holds regardless of the functional form of

the original frequency-dependent growth rates used in our

model rC(x) and rD(x).

We can determine the local stability of the fixed points

from the signs of the eigenvalues of the Jacobian matrix at

the fixed points [31,45]. The fixed point at (0, K ) is stable if

g0 , d0. The fixed point at (K, 0) is stable if g0 þ g1 . d0 þ d1.

Intuitively, these points are stable if the resident type grows

faster than the invading type. In figure 3a, we illustrate the

case where the growth rates rC(x) and rD(x) intersect in

the interval (0, 1), and rC(0) . rD(0). Then the fixed points

where one species goes extinct (K, 0) and (0, K ) are unstable.

On the one-dimensional stable manifold C þ D ¼ K, the

stability of fixed points alternate. Hence, the internal fixed

point (C*, D*) is stable. The other cases in figure 3b–d can be

analysed in the same way.
3.2. Quadratic growth rates
In order to obtain multiple intersections of the frequency-

dependent growth rates in the range (0, 1), the simplest

possibility is that one of the growth rate functions is linear

and the other is quadratic in species frequency. Therefore,

we assume a quadratic term in the growth rate function of

species D, and keep rC(x) and the population dynamics in

equations (3.1) unchanged

rD(x) ¼ d0 þ d1xþ d2x2: (3:5)

Depending on whether rD(x) has a maximum or a mini-

mum, there are two different cases allowing the growth rate

functions to intersect twice in the frequency range (0, 1). To

have two intersections of rC(x) and rD(x) within (0,1), the

function rC(x)2rD(x) must have two roots in the same

range. Besides the two boundary solutions (0, K ) and (K, 0),

there are now two intermediate solutions on the manifold
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