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In this paper we extend our explanation of a model for the dynamics of the interaction
between HIV and the cells of the immune system (Nowak et al., 1990). We show
that the Simpson index of viral diversity is a Lyapunov function for a simplified
version of this model. We also present a more general mathematical characterization
of the nature of the diversity threshold exhibited by the model, including for the
first time heterogeneity in parameters like virus replication rate, cytopathicity and
antigenicity. The more general diversity threshold condition includes the different
contributions of strains with higher replication rates and cytopathicities or strains
that are only weakly recognized by the immune system. This leads to some new
insights and a more detailed understanding of why the viral diversity falls once the
diversity threshold is exceeded.

1. Introduction

The human immunodeficiency virus (H1V) is the aetiological agent of the acquired
immunodeficiency syndrome (AIDS). Despite intensive research during the past 8
years since the discovery of the virus (Barre-Sinoaussi et al., 1983; Gallo ef al., 1984),
the epidemic continues to spread in the human population. Analysing epidemiolog-
ical data reveals a depressing picture for the worst afflicted regions such as sub-
Saharan Africa, with increasing amounts of infection in the heterosexual population
(Anderson et al., 1991). In these regions it is likely that AIDS may result in popula-
tion decline within a few decades if present trends continue (Anderson et al., 1988;
Anderson & May, 1991).

HIV has a genome length of only 10 000 bases. HIV is a retrovirus and belongs
to the genus of lentiviruses which occur throughout the mammalian world. The
closest relative is the simian immunodeficiency virus (S1V). Comparative sequence
analysis of the viral genome has shown that the oldest node which links all HIV and
S1V sequences so far known may date back between 600 and 1200 years (Eigen &
Nieselt-Struwe, 1990). These data suggest that it is likely that HIV was introduced
into the human population on two (and possibly more) distinct occasions in the past.
In Eigen & Nieselt-Struwe’s analysis three categories of positions in the viral genome
are distinguished : constant (about 23%), variable (55%) and hypervariable positions
(11%). This reveals an interesting picture. The constant regions reflect the evolution-
ary kinship between virus and host, suggesting that exogenous or endogenous forms
of virus have existed in their host for a long time (probably millions of years). The
variable regions change at a faster time scale (hundreds or thousands of years)
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and characterize general biological features of the virus such as host specificity and
pathogenicity. The hypervariable regions may turn over within months and are
responsible for the observed quasispecies nature of the virus. (A quasispecies is a
well-defined mutant distribution produced by mutation and selection; see Eigen &
Schuster, 1979.) This involves changes in the structure of inmunodominant epitopes
as well as variation in cell tropism, cytopathicity and replication rate. All these
features have been shown to change within any single human infection (Asjé &
Fenyo, 1986; Cheng-Mayer et al., 1988; Nara et al., 1990). The rapid turnover of
antigenic material may lead to a breaching of the proposed diversity threshold within
a few years.

Much uncertainty surrounds the detailed mechanisms whereby the virus causes
AIDS after a long and variable incubation period. The virus impairs immune
responses by infecting and/or killing one of the most important cell populations of
the immune system, the CD4 lymphocytes. The course of HIV infections can be
separated into three stages:

(1) Acute clinical illness during primary HIV infection occurs in 50-70% of
infected patients, starts generally 2-4 weeks after infection and lasts from 1-2
weeks (Tindall & Cooper, 1991). The clinical manifestations are varied and
include fever, neuropathic and dermatological symptoms. The virus can be
isolated from infected blood cells, cell free plasma, cerebrospinal fluid and
bone marrow cells. The high replication and widespread distribution of virus
is followed by strong immunological responses, which results in a decrease
of viral antigens to almost undetectable levels and a resolution of clinical
symptoms.

(2) The second, chronic, phase (8-10 years on average) is characterized by low
levels of HIV expression and only small pathological changes. Patients are
generally asymptomatic. CD4 lymphocyte counts are constant or slowly
decreasing.

(3) The final phase is characterized by the development of ARC (AIDS related
complex) and AIDS. CD4 counts are low. Virus levels—both in terms of
infected cells and free virus in the plasma—are about 100 times larger than in
the asymptomatic stage (Coombs e? al., 1989; Ho ef al., 1989). The clinical
symptoms are varied and characterized by opportunistic infections (for a
mathematical model of the interaction between HIV and other pathogens see
McLean & Nowak, 1992). The life expectations of AIDS patients in the
absence of chemotherapeutic intervention is about 1 year.

What controls the three phases is a central but unanswered question. There is
extensive variability in the rate of progression to disease; it is not understood why
some people develop AIDS within 2 years after HIV infection, while others are still
asymptomatic after 15 years.

The large variability of HIV (Hahn et al., 1986; Weiss et al., 1986; Dalgleish et
al., 1988; Fisher et al., 1988; Looney et al., 1988; Saag et al., 1988; McKeating et
al., 1989; Meyerhans et al., 1989; Tersmette et al., 1989; Wain Hobson, 1989, Albert
et al., 1990, Balfe et al., 1990; Javaherian et al., 1990; LaRosa et al., 1990; Nara &
Goudsmit, 1990; Nara ef al., 1990; Schulz et al., 1990; Simmonds et al., 1990;
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1990; Leigh-Brown, 1991; Phillips et al., 1991; Wolfs et al., 1991) has formed the
basis of recent mathematical theories that aim to understand the mechanism of
disease progression in patients infected with HIV (Nowak, 1990; Nowak et al., 1990;
Nowak & May, 1991; Nowak et al., 1991; Nowak, 1992). The essential assumptions
are: (1) that HIV mutates rapidly during the course of an individual infection and
can generate new antigenic variants that essentially escape current immunological
attack, (2) that each such “escape mutant” evokes, and is controlled (mainly) by, a
strain-specific immune response, and (3) that populations of immune cells (CD4-
positive T helper cells) which mount strain-specific and cross-reactive immune
responses against HIV are killed—directly or indirectly—by all strains of HIV, and
consequently are depleted in HIV-infected patients. The consequence of this non-
linear interaction is an antigenic diversity threshold, below which the immune system
can control (but not completely eradicate) the virus population, but above which the
virus population eventually escapes from control by the immune responses, replicates
to high levels and destroys the CD4 cell population. This leads finally to the develop-
ment of AIDS. The new idea arising from this work is that an evolutionary mecha-
nism—on a very fast time scale (years)—is responsible for viral pathogenesis. The
evolutionary dynamics of the HIV quasispecies (based on mutation and natural
selection) leads to the development of AIDS.

In section 2 we present the antigenic drift equations to describe the replication of
different HIV mutants and the interaction between the virus population and the
immune system. The Simpson index is established as a functional measure of anti-
genic diversity and the diversity threshold condition is derived. In section 3 we show
that the Simpson index is a Lyapunov function for a simplified version of the anti-
genic drift equations. In section 4 we consider a more general model, where different
strains of HIV have different replication rates, different virulence and different
immunological parameters. A more general diversity threshold condition for eventual
virus escape is derived. A central result is that in a population below the diversity
threshold all strains remain present in finite proportions; individual strains do not
have proportions that tend to zero. After the diversity threshold is breached, however,
the fastest growing subpopulations are selected and some strains may be outcom-
peted. But breaching the diversity threshold is irreversible.

2. The Basic Antigenic Drift Equations; Derivation of the Diversity Threshold

We use the following set of ordinary differential equations to describe the replica-
tion dynamics of n different strains of HIV together with their specific immune
responses (Nowak & May, 1991; Nowak, 1992)

dy;
—=p;\r— ] '=1,..., 1
7 v;(r—px;) i n (1
dx;
—£=ku,-—uux,- i=1,...,n 2)
dt

The variables v; and x; denote, respectively, the densities of virus strain i and specific
immune cells directed at strain i. In this simple model we assume that the virus
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replication rate is constant for all strains and given by the parameter r. The specific
immune response against strain i is represented by the term, pv;x;. The production
of immune cells, x;, is assumed to be proportional to the density of strain i, i.e. given
by kv;. Immune cell function is impaired by viral action. This is represented by the
term uwvx;. In this simple homogeneous model the parameters, r, p, k and u are the
same for all viral strains. We use the notation v=) v; and x=Y x;.

For the total densities of virus and immune cells we obtain [by summing eqns (1)
and (2) over all strains ]

@=v(r—p2x,~v,~/v) i=1,...,n 3)
ds f
d—)-C-=kv—uxv i=1,...,n (4)
dt

The virus population is controlled by the immune response as long as
r/p<¥ Xivi/v. (5)

From eqn (2) we see that the individual immune cell populations tend towards the
steady-state levels
kv,

X - = (6)
uv

If we substitute this into eqn (3) we obtain
l)=v(r—pliD) @)
u

where D:=Y (v;/v) is the Simpson index, a well known (inverse) measure for (ecol-
ogical) diversity (Magurran, 1988). For a completely homogeneous population the
Simpson index obtains its maximal value, D=1. For a uniform distribution of n
different strains we have D=1/n.

If the Simpson index decreases below the critical value

p.==% 8)

pk

then & becomes positive and the virus population escapes from control by the immune
system. For a uniformly distributed virus population (D=1/n) we can write the
diversity threshold relation in terms of the number of strains that have to be present
to ensure virus growth. The virus population will eventually escape from the immune
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response if

k
n>ni=P%, 9
ru
Figure 1 shows a computer simulation of the eqns (1) and (2). Note the increase in
viral diversity (as measured by the inverse of the Simpson index) over time, albeit
with fluctuations.
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FiG. 1. Viral replication dynamics in the mode! with homogeneous parameters, with five different virus
strains, as described by eqns (1) and (2). (a) Total virus concentration; (b) concentration of the five
individual virus strains; (c) the inverse of the Simpson index as a measure for viral diversity. The diversity
threshold (broken line) is breached after about 30 time units. Parameter values: r=1,p=4-98, k=1, u=1,
n=35; this implies a diversity threshold of n,=1/D,=4-98. Initial conditions: v,=0-1, 1v,=0-001, v,=
0000], UA=0‘(X)001, 05=0'00000], x=.. .=X5=0.
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3. Viral Diversity is a Lyapunov Function for a Simplified Model

A simpler version of this model is obtained, if we assume that the dynamics of the
immune response is fast compared to the dynamics of the virus population, i.e. if the
rate constants k and u are large compared to r and p. Then we can replace the
individual x; by their steady-state levels eqn (6) and we obtain from eqn (1)

k
1)I.=vi<r-—p—pi> i=l,...,n (10)
u

where p; = v;/v denote the frequencies of the individual virus strains. For this system
the Simpson index, D, is a Lyapunov function. To prove this assertion, first note
that

D=2 5 (30,/0*—b03/0%). (11

i=1

That is, substituting from eqns (7) and (10) into (11),
. k
p=22(s3-5y). (12)
u

We have used the notation S,=} pt. One can now show that D<0, and D=0 if
and only if p;=1/nfor all i=1, ..., n. This establishes that D is indeed a Lyapunov
function for eqn (10).

The proof is an immediate consequence of the Jensen inequality

SQ aip) <y aif(p) (13)

with equality only if all p; coincide. Here f'is a strictly convex function defined on
some interval /, a; are arbitrary positive numbers such that )’ a;=1, and p;el. If we
choose f(x)=x" and a;= p; we directly obtain

(X p<Y pl (14)

with equality only if all the p; are the same. (Interestingly the Jensen inequality is
also used to prove Fisher’s Fundamental Theorem of natural selection; see Hofbauer
& Sigmund, 1988, eqn 3.13.)

A direct proof uses Lagrange multipliers. Let us define the function

F=83-S5;. (15)

We want to show that F<0 and F=0 if and only if S,=1/n. Let us maximize F
subject to the constraint S;=1, i.e.

9 (F-2s)=0 i=1,....n (16)
ap,-
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This leads to
4p,S,—3pi—A=0 i=1,...,n a7n
S}lmming over i leads to A=.S,/n. Multiplying eqn (17) by p; and summing over i
gives _ :
453—35,—S,/n=0. (18)
This can be rewritten, using eqn (15), as:
3Fmax=—52(S;—1/n). (19)

Since S;>1/n the proof is now complete.
Figure 2 illustrates the dynamics of eqn (10). The viral diversity (i.e. the inverse
of the Simpson index) increases monotonically.

4. A General Diversity Threshold Relation Including Variation in Replication Rate,
Cythopathicity and Antigenicity of Different Strains of HIV

In this section we assume that the replication rate, r, the virulence, u, and the two
immunological parameters, p and k, are different for different strains of virus. Thus
each virus strain is characterized by its own four parameters, r;, p;, k; and u;. This
reflects the large biological variability among HIV isolates from the same infected
patients. The basic equations now have the form

dU,'
——=0i(F; — piXx; i=1,...,n 20
g vt pix) (20)
dx; z
d—j=k,-v,~~—x,» Z UjUj i=l, ey N (21)

Figure 3 illustrates the dynamics of eqns (20) and (21). The numerical simulation is
started with five different strains all at the same abundance. The initial phase is
dominated by the fastest growing strain (large initial peak in virus density). Thus
the population diversity is low in this initial phase. As the immune system is activated
the fastest growing strain is suppressed. Other strains arise. Viral diversity increases,
though with many fluctuations. The frequencies of the individual strains oscillate
towards the distribution which allows them to escape from the immune response [see
eqn (25)]. It seems to be a characteristic property of eqns (20) and (21) that the
viral population only escapes after a long phase with fluctuating abundance of the
individual strains.

Let us define the population averages 7F=Y r,p;, p=Y pipi, k=Y kip; and
#=Y u;p; where the relative frequency of strain i is given by p,=v;,/v and v=3 v,
denotes the total virus density. From eqn (21) we see that x; tends towards the steady
state

f,-=k,p,»/ﬁ. (22)
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FiG. 2. Dynamics of the simplified model described by eqn (10). (a) Total virus concentration; (b)
individual virus mutants; (c) the inverse of the Simpson index. The diversity threshold is breached after
about § time units which results in a slow but continuous rise in viral abundance. Parameter values: r=
1, p=4-5, k=1, u=1, n=35; this implies a diversity threshold of n.=1/D,=4-5. Initial conditions: v, =
0-1, v,=0-001, v3=0-0001, v;=0-00001, vs=0-000001.

If we substitute this into eqn (20) we obtain

d_la=,,,(,,_@) i=1,....n. (23)
dt i

Here again we have essentially made the assumption that the dynamics of the immune
response is fast compared to the virus population dynamics. Summing eqn (23) over
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F1G. 3. Numerical simulation of the model with different values for different strains of HIV [as
described by eqns (20) and (21)]. Here five different strains are simulated. (a) The total virus population,
v, shows an initial peak, followed by a long period with low density and a final phase with increasing
density. This is the general pattern that is observed in HIV-infected patients: the initial phase, the long
asymptotic period and finally the development of AIDS. (b) Population sizes of the individual strains, v;.
The fastest replicating variant 1 (denoted by the continuous line) dominates the initial and final phase of
the infection. (¢} Average replication rate, . (d) The “average reproductive rate” of the virus population,
defined by R="Fi/pk. (€) Average cytopathicity, 4. (f) The viral diversity as measured by the inverse of
the Simpson index. Initially all strains have the same abundance (hence 1/D=35 at time 0). The diversity
decreases in the initial phase of the infection and increases later on (but with many fluctuations). Parameter
values: n=35, k,=...=ks=1,n=30,r,=2, r;=1, ry=1, rs=0-5, py=240, p,=50, p;=18, p,=9, ps=5,
uy=6, u;=2, u3=1, us=1, us=1. Hence ¥ r,u,/p;k; =1-09667.
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all strains i=1,...,n leads to
d k
o v(F—p—> (24)

where ﬁc=z pkip? is the effective immune response against the virus population
and represents &n inverse measure for antigenic diversity of the virus population (a
weighted Simpson index). Virus growth is positive if

Fii> pk. (25)

This means that the average replicative capacity, 7, times the average virulence, #,
has to exceed the effective immune response, pk.

Our goal is to derive the diversity threshold condition for eqns (20) and (21). We
will show that

nopa;

z

>1 (26)
i=1 Diky

is necessary and sufficient for eventual virus escape.
For the viral frequencies, p;, we use eqns (23) and (24) to derive the differential
equation

dp; ki pk
p=Pi<’i"pTPi—’+pT)- (27)
d¢ u u

By rescaling v] = u;v;, and introducing the parameter combination s;=p;k;/u;, we can
reduce the number of parameters appearing explicitly in eqns (23), (24) and (27):

dv;
——=ul(r;—s:p, i=1,..., 28
P vi(ri—s:ph) i n (28)
do’
—— 4 29
dt e @
dp} . .
d_l‘:zp;(r’.—sip’—¢) l=l,...,n. (30)

Here we use the rescaled variables p/=uv;/v', v'=} v} and ¢ =Y. pi(r;—s;p}).
Without loss of generality we can label the strains such that r,>r,>...>r,>0.

Equation (30) has a globally stable fixed point (see below), E*, with the following

co-ordinates

—h%

pr=lT8m g et m (1)

S

pri=...=pk=0.
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Remembering that )" p¥ =1, we obtain for ¢ the expression

¢m=( 2 (n/si)— 1)/ /s (32)
i=1 i=1

Here m is the largest integer such that r,,> ¢,,. [It is easy to show that all other fixed
points of eqn (30) are indeed unstable.]

We see at once that for ZLI (r:/s:)) <1 the fixed point, E*, is in the interior of the
simplex (because then ¢} is negative and hence no r, can be smaller than ¢}).

If E* lies in the interior of some face of the simplex (i.e. m is strictly smaller than
n) then ¢, has to be positive (because then we have ¢,,>r,,.,>0). Note that ¢,,>0
is equivalent to ¥/, (ri/s:)> 1.

Therefore we have shown: As soon as the individual frequencies have converged
to their equilibrium values, the total virus population grows according to

dov noriu; mo
—= ;: v —'-L—'l _"‘. 33
ds ¢ (f; pik; ) / ,-;1 pik; &)

Here we have used eqns (29) and (32), the relation v’ =vu and the fact that & is
constant at equilibrium.
() If

riu;

Y <1
i=1 Piki
then the total virus population cannot escape from the immune response. The indi-
vidual frequencies converge to the interior fixed point. No frequency can converge
to zero.
2

n

)

i=1 Piki

riu;
RSN |

then the virus population will eventually escape from the immune response. Some
frequencies, p;, may converge to zero. The fixed point, E*, can lie at the boundary
of the simplex. But in any case we have that ¢,,>0 and hence 9>0. Note that m
is exactly the integer that maximizes ¢; (i=1, ..., n), so that the finally escaping
quasispecies—the ensemble of virus strains 1 to m—is the fastest growing of all
possible ensembles.
An equation of the form of eqn (29) has previously been studied by Epstein (1979).
For all equations of the type
Y301 (34)
where f; are strictly decreasing functions and f=3"_, y:f;, Hofbauer et al. (1981)
have shown that there exists a unique point E*=(p}, ..., p¥) in the simplex S,
which is the w-limit of every orbit in the interior of §,. If E* lies in the interior of
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some face of the simplex, then it is also the w-limit of every orbit in the interior of
this face. The global stability of E* is shown with the Lyapunov function

P()= Ijl Pi;-

In fact eqn (30) is a Shahshahani gradient, and for monotonically decreasing
functions, f;, the potential is strictly concave on the simplex, S,. Hence there exists
a unique, globally attracting fixed point (Hofbauer & Sigmund, 1988).

Finally it is worth mentioning that eqn (30) is equivalent to a game dynamical
equation (Taylor & Jonker, 1979; Hofbauer & Sigmund, 1988) on the simplex, S,:

dp!

dr = pil(Ap)i— pAp] (35)
where p=(pi, ..., pn) and
ry—8 r <t r
ac| 7 T ooon
r, rn Tt FyT 8y

5. Discussion

The interaction between HIV and the cells of the immune system is of extraordin-
ary complexity. Thus our simple eqns (1), (2), (20) and (21) are only a poor reflection
of reality. They are not designed to capture many detailed aspects, but only a few
which seem to be essential. The basic assumptions are that the immune system
mounts strain-specific responses against HIV and that the virus impairs immune
responses in a general, non-specific way. This is the intuitive explanation for the
occurrence of the diversity threshold phenomenon (which is not an a priori assump-
tion of the theory). If all strains have the same biological parameters, then simply
the total number of strains determines whether or not the virus population will
eventually escape [eqn (9)]. For the more realistic model with different parameters
for different strains, we have a more complex condition [eqn (26)] which determines
eventual virus escape. Here fast-replicating strains, highly cytopathic strains, or
strains that are not very well recognized by the immune system have a disproportion-
ately larger effect. (Nelson & Perelson, 1992, have discussed a mechanism by which
slow-replicating strains of HIV can escape more efficiently from immune responses.)

During an HIV infection new antigenic variants are produced continuously (by
replication errors of the virus-encoded reverse transcriptase and the host-cell-encoded
RNA polymerase). This accumulation of new antigenic material may eventually
breach the diversity threshold. As long as the virus population is below the diversity
threshold [eqn (26)], all the different virus strains can coexist. No individual strain
can be entirely outcompeted. The system is permanent (but the total virus population
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converges to zero if no new escape mutants are produced). Exceeding the diversity
threshold leads to eventual virus escape (after a period of low virus density and
oscillations in the abundances of individual strains). This results in competition and
selection of the fastest growing quasispecies. The elimination of slow strains, how-
ever, cannot carry the population below the diversity threshold. Breaching the divers-
ity threshold is an irreversible step from coexistence to competition and increasing
virus concentrations.

We would like to thank Karl Sigmund, Angela McLean and Roy Anderson for helpful
discussion. Support from the Royal Society (M.A.N.,, R.M.M.) and Wolfson College
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