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tion of cooperation’ published by
Biology to mark its 50th anniversa
This article is a brief introduction to the special issue ‘Evolu-
the Journal of Theoretical

ry. Cooperation is a favorite
topic among evolutionary biologists because it seems to be at
variance with natural selection. Why should one individual help
another who is a potential competitor in the struggle for survival?
Yet cooperation is abundant in nature and appears to be involved
in all great constructive steps of life on earth. Here I propose a
definition for games that are cooperative dilemmas. The Prison-
er’s Dilemma represents the most stringent situation, where
natural selection opposes cooperation unless a mechanism for
the evolution of cooperation is at work. In relaxed social dilem-
mas some cooperation can evolve even without a mechanism, but
a mechanism would tend to augment the level of cooperation or
facilitate its emergence. I discuss five mechanisms: direct reci-
procity, indirect reciprocity, spatial selection, multi-level selec-
tion and kin selection. These mechanisms can work separately
and together to promote evolution of cooperation. I give a short
overview of the papers in this issue and provide an outlook of
some of the goals that might lie ahead.

Biologists are interested in cooperation, because it seems to be
the antithesis to the competition that is fundamental to natural
selection. Why should one individual help another who is a
competitor in the struggle for survival? Yet cooperation is
abundant in nature. It can be seen among viruses, bacteria, other
microorganisms, animals, plants and humans. The evolutionary
processes which have led to the eukaryotic cell, to multi-cellular
organisms, to social insects and to human society are all based to
some extent on cooperation.

Cooperation is a key aspect of social evolution, where interac-
tions among individuals affect reproductive success. The standard
mathematical approaches for studying social behavior are offered
by game theory (Harsanyi and Selten, 1988; Fudenberg and Tirole,
1991; Osborne and Rubinstein, 1994; Samuelson, 1997; Camerer,
2003) and evolutionary game theory (Maynard Smith, 1982;
Hofbauer and Sigmund, 1988, 1998, 2003; Weibull, 1995;
Skyrms, 1996; Dugatkin and Reeve, 1998; Cressman, 2003;
Nowak and Sigmund, 2004; Nowak et al., 2004; Taylor et al.,
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2004; Nowak, 2006; Antal et al., 2009a; Sigmund, 2010; Helbing,
2011). Understanding the genetic evolution of behavior requires
the interaction between evolutionary game theory and popula-
tion genetics.
1. What is cooperation?

Consider a game between two strategies, C and D, given by the
payoff matrix
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When does it make sense to call strategy C ‘cooperation’ and
strategy D ‘defection’? In other words when is the game a
‘cooperative dilemma’?

We can consider the following definition (see also Hauert
et al., 2006): the game is a cooperative dilemma if (i) two
cooperators get a higher payoff than two defectors, R4P, and
(ii) yet there is an incentive to defect. This incentive can arise in
three different ways: (iia) if T4R then it is better to defect when
playing against a cooperator; (iib) if P4S then it is better to
defect when playing against a defector; and (iic) if T4S then it is
better to be the defector in an encounter between a cooperator
and a defector. If at least one of those three conditions hold, then
we have a cooperative dilemma. If none hold, then there is no
dilemma and C is simply better than D. If all three conditions hold,
then we have a Prisoner’s Dilemma, which is defined by
T4R4P4S (Rapoport and Chammah, 1965).

The Prisoner’s Dilemma is the most stringent cooperative
dilemma. Here defectors dominate cooperators. Thus, in a well-
mixed population natural selection always favors defectors over
cooperators. For cooperation to arise in the Prisoner’s Dilemma we
need a mechanism for the evolution of cooperation (Nowak, 2006).

Cooperative dilemmas which are not the Prisoner’s Dilemma
could be called ‘relaxed cooperative dilemmas’. In these games it
is possible to evolve some level of cooperation even if no
mechanism is at work. One such example is the snow-drift game,
given by T4R4S4P. Here we find a stable equilibrium between
cooperators and defectors even in a well-mixed population.
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The above definition can be generalized to n person games.
Denote by Pi and Qi the payoffs for cooperators and defectors,
respectively, in groups that contain i cooperators and n�i defec-
tors. For the game to be a cooperative dilemma we require that
(i) an all cooperator group gets a higher payoff then an all defector
group, Pn4Q0, and (ii) yet there is some incentive to defect. The
incentives to defect can take the following form: (iia) PioQi�1 for
i¼ 1 . . .n and (iib) PioQi for i¼ 1 . . .n�1. The conditions (iia)
mean that an individual can increase its payoff by switching from
cooperation to defection. The conditions (iib) mean that in any
mixed group defectors have a higher payoff than cooperators. If
only some of these incentives (ii) hold than we have a relaxed
cooperative dilemma. In this case some evolution of cooperation
is possible even without a specific mechanism. But a mechanism
would typically enhance the evolution of cooperation by increas-
ing the equilibrium abundance of cooperators, increasing the
fixation probability of cooperators or reducing the invasion
barrier that needs to be overcome. The volunteer’s dilemma is
an example for a relaxed situation (Archetti, 2009a,b, Archetti
and Scheuring, 2011). If all incentives hold, we have the n

person equivalent of a Prisoner’s Dilemma, and a mechanism for
evolution of cooperation is needed. The ‘Public goods game’ is an
n person Prisoner’s Dilemma (Hardin, 1968, Dawes, 1980;
Bergstrom et al., 1986).

Optional games (Hauert et al., 2002, 2007) can lead to relaxed
social dilemmas. Participation is voluntary, which means besides
cooperation and defection there is a third strategy, loners, L.
Loners do not participate in the game. If no game occurs, then
both individuals receive payoff, P0. (There can be a cost for
entering the game.) We have the following payoff matrix:
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If R4P0 cooperators dominate loners. If P04P loners dom-
inate defectors. If T4R and P4S defectors dominate cooperators.
This cyclic domination implies a relaxed social dilemma.
2. Five mechanisms for evolution of cooperation

A mechanism for the evolution of cooperation is an interaction
structure, specifying how the individuals of a population interact
to accumulate payoff and to compete for reproduction. All
proposed interaction structures can be classified into five
mechanisms.

2.1. Direct reciprocity

There are repeated encounters between the same two indivi-
duals, who can use conditional strategies that depend on previous
outcomes. Direct reciprocity is based on the concept of repeated
games (Trivers, 1971; Axelrod, 1984; Fudenberg and Maskin,
1986; Milinski, 1987; Binmore, 1994; Mailath and Samuelson,
2006). In a repeated Prisoner’s Dilemma, always defect (ALLD) is
not necessarily the best strategy. If the chance of another
encounter between the same two players is sufficiently high,
then cooperative strategies can prevail. Simple strategies for
playing the repeated Prisoner’s Dilemma include grim-trigger,
tit-for-tat, generous-tit-for-tat, contrite tit-for-tat and win-stay,
lose-shift (Axelrod, 1984; Molander, 1985; Kraines and Kraines,
1989; Fudenberg and Maskin, 1990; Nowak and Sigmund, 1989,
1992, 1993; Wu and Axelrod, 1995; Boerlijst et al., 1997).

Cooperation via direct reciprocity is never fully stable.
Depending on payoff values and the length of the game, tit-for-
tat (TFT) can be robust against invasion by ALLD. But TFT is
neutral with always cooperate (ALLC). Random drift can lead from
TFT to ALLC. Subsequently ALLC can be invaded by ALLD. Coop-
erative populations – no matter which strategy they use – are
always challenged, undermined and ultimately destroyed. Once
cooperation is gone it needs to be rebuilt. Cycles between
cooperation and defection are a typical feature of direct recipro-
city (Nowak and Sigmund, 1989; Imhof et al., 2005; Imhof and
Nowak, 2010).

Another important aspect of direct reciprocity is how to deal
with noise (May, 1987). Random mistakes caused by ‘trembling
hands’ or ‘fuzzy minds’ can lead to destructive vendettas when
the players use TFT. Successful strategies for playing repeated
cooperative dilemmas need to be able to correct mistakes and
repair relationships. Generous tit-for-tat, for example, has a
stochastic response to defection: always cooperate when the
other person has cooperated and sometimes cooperate even if
the other person has defected. Natural selection can therefore
promote the evolution of forgiveness (Nowak and Sigmund,
1992).

2.2. Indirect reciprocity

The key aspect of indirect reciprocity is reputation. There are
repeated encounters in a population of individuals. Some encoun-
ters are observed by others and/or information about those
encounters spreads through communication. Individuals can
adopt conditional strategies that base their decision on the
reputation of the recipient. Direct reciprocity relies on your own
experience with someone, while indirect reciprocity uses the
experience of others. Cooperation is costly but leads to the
reputation of a helpful individual who might receive cooperation
from others. Many papers explore empirical (Wedekind and
Milinski, 2000; Dufwenberg et al., 2001, Milinski et al., 2002a,b,
Wedekind and Braithwaite, 2002; Bolton et al., 2004, 2005;
Seinen and Schram, 2005; Bshary and Grutter, 2006;
Sommerfeld et al., 2007; Bshary et al., 2008; Engelmann and
Fischbacher, 2009; Warneken and Tomasello, 2009) and theore-
tical aspects of indirect reciprocity (Nowak and Sigmund, 1998a,b,
2005, Suzuki and Akiyama, 2007a,b, Roberts, 2008; Ohtsuki et al.,
2009; Uchida, 2010; Uchida and Sigmund, 2010; Berger, 2011).

A strategy for indirect reciprocity consists of a social norm and
an action rule. The social norm specifies how to evaluate inter-
actions between individuals. The action rule specifies whether or
not to cooperate given the reputation of the other individual.
Indirect reciprocity can lead to cooperation if the probability to
know someone’s reputation is sufficiently high.

Alexander (1987) discusses many important aspects of indirect
reciprocity – only some of which have been explored so far – and
is perhaps the first person to use this term. Alexander proposed
that indirect reciprocity based on reputation is a major factor in
the emergence of moral systems in human societies. But Alex-
ander does not provide a formal model and does not delineate the
mechanism from group selection. Sugden (1986) points out that
defection against an undeserving recipient should not lower one’s
own reputation. This idea leads to the notion of ‘standing’ in
indirect reciprocity and ‘contrite tit-for-tat’ in direct reciprocity.
Kandori (1992) examines a social norm that gives a bad reputa-
tion for cooperating with a defector. This rule is called ‘judging’ in
indirect reciprocity.

David Haig once remarked: ‘For direct reciprocity you need a
face. For indirect reciprocity you need a name.’ Recognizing
individual faces and reading their intent can be an important
feature for playing repeated games simultaneously with a number
of other individuals. For efficient versions of indirect reciprocity,
however, it is essential to be able to talk to each other about
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others, which necessitates the concept of names. In the absence of
names, indirect reciprocity can only work via direct observation
of another’s action.

Whenever my behavior toward a person depends on the
previous interactions between me and that person, we are in
the realm of direct reciprocity. Whenever my behavior also
depends on what that person has done to others, indirect
reciprocity is at work. Thus indirect reciprocity can be seen as a
fairly general mechanism that encompasses most human inter-
actions. The essence of indirect reciprocity is conditional behavior
that depends on what you have done to me and to others. This
mechanism is obviously not limited to games of cooperation and
defection.

All theories that study the resolution of multi-player social
dilemmas use targeted interactions, such as ostracism, punish-
ment or reward (Yamagishi, 1986; Ostrom, 1990; Sethi and
Somanathan, 1996; Fehr and Gächter, 2000; Gürerk et al., 2006;
Rockenbach and Milinski, 2006; Milinski and Rockenbach, 2007;
Dreber et al., 2008; Jaffe, 2008; Rand et al., 2009; Jacquet et al.,
2011). Defectors or cooperators in the multi-player game can be
identified and treated differently in subsequent, targeted interac-
tions. The strategies are conditional actions that depend on
previous outcomes. Thus, the mechanisms that operate here are
either direct or indirect reciprocity. In the first case I respond to
what you have done to me. In the second case I respond also to
what you have done to others.

Some researchers use the term ‘strong reciprocity’ to denote
the behavior of cooperation in the public goods games and
punishment of defectors in the targeted interactions (Bowles
and Gintis, 2004). ‘Strong reciprocity’ describes a behavioral
strategy, but not an evolutionary mechanism. For ‘strong recipro-
city’ to evolve the mechanism of indirect reciprocity is implicitly
used: I punish you, because you have defected with others.

2.3. Spatial selection

The outcome of evolutionary games can be affected by popula-
tion structure (Nowak and May, 1992; Lindgren and Nordahl,
1994; Ellison, 1993; Ferriere and Michod, 1996; Killingback and
Doebeli, 1996; Nakamaru et al., 1997; Szabó and T +oke, 1998; Van
Baalen and Rand, 1998; Szabó and Fath, 2007; Pfeiffer et al., 2001;
Hauert and Doebeli, 2004; Yamamura et al., 2004; Santos et al.,
2006; Hauert et al., 2008; Helbing and Yu, 2008; Roca et al., 2009;
Wakano et al., 2009; Fowler and Christakis, 2010; Li et al., 2010;
Rong et al., 2010; Szabó et al., 2010). Strategies that are successful
in a well-mixed population, where everyone interacts with every-
one else equally likely, may not win in a structured population
and vice versa. The population structure specifies who interacts
with whom to accumulate payoff and who competes with whom
for reproduction. The interaction and replacement structures
need not be identical (Ohtsuki et al., 2007).

Population structure can be static or dynamic. Evolutionary
graph theory studies evolution on constant graphs (Lieberman
et al., 2005; Ohtsuki et al., 2006; Ohtsuki and Nowak, 2006, 2008;
Taylor et al., 2007; Fu et al., 2009; Perc, 2009; Liu et al., 2010). In
contrast, evolutionary set theory describes individuals moving
between sets thereby changing the interaction structure as part of
the evolutionary process (Tarnita et al., 2009a). ‘Active linking’
means that individuals can choose to break unproductive links
and establish new ones (Skyrms and Pemantle, 2000; Pacheco
et al., 2006; Fu et al., 2008; Perc and Szolnoki, 2010; Fehl et al.,
2011; Rand et al., 2011).

Population structure can result from the distribution of indi-
viduals in physical space, on social networks or in phenotype
space (Antal et al., 2009a,b). Tag based cooperation (Riolo et al.,
2001; Traulsen and Claussen, 2004; Jansen and Van Baalen, 2006;
Traulsen and Nowak, 2007) can be interpreted as clustering in
phenotype space.

Spatial selection can promote evolution of cooperation,
because cooperators from clusters which can prevail against
exploitation by defectors. The underlying principle is ‘neighbors
help each other’. The particular rule that is used for strategic
updating (reproduction) is of crucial importance. Cooperation can
prevail if the payoff from cooperators inside a cluster influences
the movement of the boundary between cooperators and defec-
tors (Nowak and May, 1992; Ohtsuki and Nowak, 2006).

Tarnita et al. (2009b, 2011) provide general results for how any
type of population structure affects evolutionary games in the
limit of weak selection.

2.4. Multi-level selection

Darwin (1871) wrote: ‘There can be no doubt that a tribe
including many members who ywere always ready to give aid to
each other and to sacrifice themselves for the common good,
would be victorious over other tribes; and this would be natural
selection.’ The basic idea is that natural selection does not only act
on individuals but also on groups. Just as individuals compete
within groups, groups compete with each other. This concept
leads to group selection or multi-level selection (Wynne-Edwards,
1962; Wilson, 1975; Wade, 1977; Leigh, 1983; Nunney, 1985;
Szathmáry and Demeter, 1987; Goodnight and Stevens, 1997;
Sober and Wilson, 1999; Boyd and Richerson, 2002; Kerr and
Godfrey-Smith, 2002; Paulsson, 2002; Ono et al., 2003;
Killingback et al., 2006; Traulsen et al., 2008; Wilson and
Wilson, 2008; Van den Bergh and Gowdy, 2009; Scheuring,
2010; Wang et al., 2011).

Multi-level selection can promote evolution of cooperation. In
a simple scenario, defectors dominate cooperators within groups,
but groups of cooperators outcompete groups of defectors. Multi-
level (or group) selection is a powerful mechanism for the
evolution of cooperation especially if there are many small groups
and if the migration rate between groups is not too large
(Traulsen and Nowak, 2006).

Spatial selection and multi-level selection are distinct mechan-
isms. In the former case competition (selection) occurs only
between individuals. In the second case there is competition
between individuals and competition between groups.

The idea of group selection has a long and troubled history, but
mostly in terms of verbal arguments on both sides. The mathe-
matical theory of evolution clearly shows that group selection is
possible provided certain conditions hold. It requires careful
examination to determine whether these conditions are met by
a particular empirical situation.

2.5. Kin selection

Kin selection is a mechanism for the evolution of cooperation if
properly formulated. Kin selection arises if individuals use con-
ditional strategies based on kin recognition. For example, I will
jump into the river to save two brothers, eight cousins, but not a
stranger. Therefore the essence of kin selection is kin recognition
and conditional behavior. It is a form of nepotism where closer
relatives are favored over distant ones and over strangers. The key
parameter that arises in kin selection is genetic relatedness
(Hamilton, 1964; Grafen, 1979, 1985, 2006; Taylor, 1992; Frank,
1998; Michod, 1999; Rousset, 2004).

Many people equate kin selection with inclusive fitness theory,
which is unfortunate in my opinion. Inclusive fitness is a parti-
cular method of accounting fitness effects in social situations.
Although inclusive fitness is often claimed to be a general
approach for studying social evolution, it is in fact a limited



M.A. Nowak / Journal of Theoretical Biology 299 (2012) 1–84
theory that works in some situations but not in others (Nowak
et al., 2010). The crucial limitation of the theory is the necessity to
split personal fitness into additive components – those that are
caused by one’s own actions and those that are caused by the
actions of others.

The concept of ‘stripping’ and ‘augmenting’ personal fitness (as
if all effects were additive) is clearly formulated in Hamilton’s
(1964) definition: ‘Inclusive fitness may be imagined as the
personal fitness which an individual actually expresses in its
production of adult offspring as it becomes after it has been first
stripped and then augmented in a certain way. It is stripped of all
components which can be considered as due to the individual’s
social environment, leaving the fitness which he would express if
not exposed to any of the harms or benefits of that environment.
This quantity is then augmented by certain fractions of the
quantities of harm and benefit which the individual himself
causes to the fitnesses of his neighbors. The fractions in question
are simply the coefficients of relationship appropriate to the
neighbors whom he affects; unit for clonal individuals, one-half
for sibs, one-quarter for half-sibs, one-eighth for cousins,yand
finally zero for all neighbors whose relationship can be consid-
ered negligibly small.’

The problem is that most evolutionary processes do not grant
such additivity. Therefore, inclusive fitness is a particular method
that can be used in some situations but not in others (Nowak
et al., 2010). Proponents of inclusive fitness theory do not seem to
appreciate this mathematical fact (Abbot et al., 2011; Boomsma
et al., 2011; Strassmann et al., 2011; Ferriere and Michod, 2011;
Herre and Wcislo, 2011). Gardner et al. (2011) – also avoiding the
essential problem – explore whether generalized versions of
Hamilton’s rule can be formulated as to be ‘always true’. The
problem here is that ‘cost’ and ‘benefit’ become complicated
parameters that depend on relatedness and population structure.
Such a mathematical formula does not help to solve any parti-
cular evolutionary process and has no predictive power for theory
or experiment (see also Nowak et al., 2011).

Several authors have pointed out that calculating inclusive
fitness, whenever that is possible, provides little or no insight for
understanding evolutionary dynamics (Fletcher et al., 2006;
Fletcher and Doebeli, 2009; Van Veelen, 2009; Doebeli, 2010;
Traulsen, 2010). Gadagkar (2010) discusses the inclusive fitness
debate from the perspective of a biologist who has studied social
insects for over two decades.

For obtaining a good understanding of kin selection as a
mechanism for the evolution of cooperation, it is – in my opinion –
essential to develop a theory which is not limited by the
concept of inclusive fitness. This is an important task for future
research.
3. This issue

Archetti and Scheuring (2012) make the important point that
nonlinear public goods games need not be n-person Prisoner’s
Dilemmas. Instead they can be relaxed social dilemmas, in which
some cooperation can arise without the need of a specific
mechanism.

Axelrod (2012) gives a brief historical and autobiographical
perspective of his highly influential work that launched many
studies of direct reciprocity.

Sigmund (2012) gives a state of the art review of indirect
reciprocity discussing recent theoretical advances and experi-
mental tests.

Damore and Gore (2012) review social evolution among
microbes and discuss the inadequacy of inclusive fitness theory
or Hamilton’s rule to make meaningful predictions in this area.
They call for a return to rigor in models of microbial social
evolution.

Alger and Weibull (2012) study social evolution in a frame-
work where the assortment parameter is an exogenously given
constant, which determines the degree to which interactions
preferentially occur between individuals that use the same
strategy or behavioral rule (Eshel and Cavalli-Sforza, 1982; Alger
and Weibull, 2010). They conclude that in their framework
Hamilton’s rule is generally violated.

Simon et al. (2012) show that Hamilton’s rule generally fails to
predict the direction of selection in a simple multi-level selection
model. They also point out that the relatedness parameter in
Hamilton’s rule is at best only a description of the current level of
assortment, but does not provide an understanding of the
mechanism that leads to assortment nor its temporal dynamics.

Van Veelen et al. (2012) argue that group selection and kin
selection approaches are not equivalent; they also discuss pro-
blems which arise when using the Price equation instead of a
specific model for evolutionary dynamics.

Szabó and Szolnoki (2012) study spatial evolutionary game
dynamics among players that have some degree of other regard-
ing social preferences. There is a parameter, Q, which scales the
utility function from completely selfish, Q¼0, to fraternal, Q¼1/2,
to totally other regarding, Q¼1. In the latter case the over-
statement of the other regarding preference leads to a social
conflict called ‘‘lovers’ dilemma’’.

Santos et al. (2012) argue that diversity can promote coopera-
tion in games on graphs. They observe that cooperators in highly
connected positions are more able to resist invasion of defectors
than vice versa. Defectors in pivotal positions cannot profit there
in the long run and become victims of their own success.

Allen et al. (2012) explore how mutation affects evolutionary
game dynamics on graphs. They obtain analytical results for weak
selection.

Hauert and Imhof (2012) analyze evolutionary game dynamics
in deme structured populations with mutation and migration.
They find that this population structure does not promote evolu-
tion of cooperation except for a pairwise comparison process,
which has two parameters for scaling the intensity of selection.

Ellingsen and Robles (2012) study the evolutionary dilemma of
parental investment. They challenge the conventional wisdom
that early costs are irrelevant for the allocation of subsequent
investment. Instead they find that if one parent has substantial
early costs, then the other parent should carry a large fraction of
later costs.

Traulsen and Reed (2012) compare models of evolutionary
game dynamics with those of population genetics (see also
Hammerstein, 1996). In particular they show that meiotic drive
leads to cooperative dilemmas, while including resistance to
meiotic drive leads to rock–paper–scissors games.

Cavaliere et al. (2012) study dynamical graphs where new-
comers connect to successful role models and their neighbors.
They find that prosperity is associated with instability: the total
income of the network increases with the number of connections,
but at the same time cooperators become vulnerable to invasion
by defectors.

Milinski and Rockenbach (2012) compare the efficiency of
reward and punishment in promoting cooperation in public goods
games. They argue that the costs of punishment dramatically
reduce efficiency in short games, but not necessarily in longer
ones (Gächter et al., 2008). Rewarding works well if the public
goods game is embedded in a rich social context, where reputa-
tion for cooperativeness can pay off independently (Rockenbach
and Milinski, 2006).

Cressman et al. (2012) investigate how institutional incentives
affect individual rational behavior. They study public goods
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games followed by different reward and/or punishment schemes
that are carried out by institutions rather than individuals. They
argue that full cooperation in the public goods game can be
achieved if institutions use both reward and punishment.

Tavoni et al. (2012) study how common-pool resources, to
which individuals have open access, lead to multi-person social
dilemmas (Hardin, 1968; Ostrom, 1990, Levin, 2009). They sug-
gest that ‘equity-driven ostracism’, which excludes norm violators
from social privileges, is an efficient way to promote cooperation.
This approach has a clear advantage over costly punishment,
because it is not mutually destructive.

Colman et al. (2012) present an agent based simulation where
cooperation evolves because of similarity discrimination. Each
agent has two continuously variable genes. One gene specifies the
probability to cooperate with similar co-players, while the other
gene specifies the probability to cooperate with dissimilar co-
players. Similarity is determined by the distance in these two
genic values. Similarity judgement could also be based on other
phenotypic traits, which would lead to a model similar to Antal
et al., (2009b).

Rand (2012) suggests that online labor markets such as
Amazon Mechanical Turk provide a useful platform for conduct-
ing behavioral experiments. The process is cheap and efficient.
The experience is similar to performing computer simulations.

Dasgupta (2012) argues that many empirical studies of human
cooperation analyze situations where institutions govern the
management of public goods, but the resulting games are not
Prisoner’s Dilemmas. In some cases exploitation of individuals can
masquerade as cooperation.
4. What might lie ahead

Research on cooperation is a highly active field moving into
many different directions. Here I give a short list of what seem to
be promising open problems.
1.
 It is often said that cooperation is crucially involved in
constructive steps such as the emergence of cells, multi-
cellularity and animal societies, but few specific models have
been developed. There is a big difference, for example, if
multi-cellularity (or eusociality) emerges by coming together
of individuals or staying together of individuals after repro-
duction. Cooperation seems to play a very different role in
these two cases.
2.
 For direct reciprocity it would be important to study the key
difference between the simultaneous game (the usual
approach) and the alternating game, where the players take
turns (Nowak and Sigmund, 1994; Neill, 2001). There is also a
continuous range of possibilities between these two extreme
forms of conducting a repeated game.
3.
 For indirect reciprocity the standing and judging strategies
seem fragile given the amount of information they need and
given their vulnerability to deception. It would be desirable to
find variants of indirect reciprocity where simple scoring
strategies are more stable.
4.
 Many models for language evolution tacitly assume coopera-
tion between the players: the common goal is mutual under-
standing. Vice versa many models of indirect reciprocity
assume communication between players. It would be great
to develop an approach for the coevolution of language and
indirect reciprocity.
5.
 Let us develop a precise model for kin selection that is not
limited a priori by an inclusive fitness approach. Individuals
recognize kin and behave accordingly. There could be coevo-
lution between cooperation and kin recognition.
6.
 There is much work on cooperation and defection within a
species, but much less theoretical work on cooperation and
defection between members of different species (Doebeli and
Knowlton, 1998).
7.
 Evolutionary games are typically studied in populations of
equals, where everyone has the same background payoff,
same endowment or strength. Breaking this symmetry should
have important consequences.
8.
 Many theoretical and empirical studies of peer punishment
(artificially) exclude negative effects such as retaliation or
coercion. I expect that the major effect of peer punishment in
realistic situations is not promotion of cooperation, but
exploitation of individuals.
9.
 A difficult task is to design field studies that explore coop-
erative behavior of humans (Bateson et al., 2006; Ernest-Jones
et al., 2011). It would be fascinating to quantify payoff and
evaluate strategies in natural situations that represent coop-
erative dilemmas.
10.
 The interaction between indirect reciprocity and partner
choice could be investigated in theory and experiment.
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