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Abstract

In this paper, we show that for evolutionary dynamics between two types that can be described by a Moran process, the conditional

fixation time of either type is the same irrespective of the selective scenario. With frequency dependent selection between two strategies A

and B of an evolutionary game, regardless of whether A dominates B, A and B are best replies to themselves, or A and B are best replies

to each other, the conditional fixation times of a single A and a single B mutant are identical. This does not hold for Wright–Fisher

models, nor when the mutants start from multiple copies.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A key aspect of evolutionary dynamics concerns the
process where a new mutant is introduced in a population.
Through selection and random drift, the frequency of the
mutant changes, and sometimes the mutant can reach
fixation in the population (Fisher, 1922, 1930; Haldane,
1927; Wright, 1931, 1942; Kimura, 1957, 1994; Robertson,
1960; Bürger, 2000). The probability of fixation and the
mean time to fixation of a single mutant are important
quantities. There is an extensive literature on this topic
using diffusion theory to calculate both the fixation
probability and the conditional mean time to fixation
(Kimura, 1994; Ewens, 2004).

In particular, the conditional fixation time of a single
mutant is often a more relevant measure of the evolu-
tionary success of a mutant. Since the loss of a mutant gene
is much more frequent, the conditional fixation time is
much longer than the unconditional absorption time until
either fixation or loss. Nei and Roychoudhury (1973) and
e front matter r 2006 Elsevier Ltd. All rights reserved.
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Maruyama (1974, 1977)) noted, using diffusion theory,
that under weak constant selection the mean fixation time
for a favorable mutant is the same as that for the
corresponding deleterious mutant in a Wright–Fisher
process. Diffusion methods can similarly show that in the
setting of weak frequency dependent selection involving
two phenotypes engaged in a game, the mean fixation time
of a single mutant of either phenotype is the same.
However, we show in this paper that, even under strong

frequency dependent (including constant) selection, the
conditional fixation time of a single mutant of either
phenotype has the same distribution, hence same mean,
variance, etc., for a Moran process, though not for a
Wright–Fisher process. Our method is much simpler
algebraically than the diffusion calculations of Nei and
Roychoudhury (1973), Maruyama (1974, 1977) and Ewens
(2004); furthermore, it requires no limiting assumption on
population size or selection factor.
In Section 2, we focus on the frequency dependent game

dynamics of a Moran process for finite populations
proposed in Nowak et al. (2004), Nowak and Sigmund
(2004) and Taylor et al. (2004). We state the surprising
result that the time to fixation of a single mutant, under
weak and strong selection, in a finite population, is
independent of the strategies of the mutant and the
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resident population. In other words, a single A mutant
fixates in a population of B players as quickly as a single B

mutant in a population of A players, regardless of the
strength of selection, or the fact that a single A mutant
might be more likely to fixate than a single B mutant, or
vice versa. Surprisingly this symmetry holds not only for
the mean but also for variance and all higher moments. We
have learned that Antal and Scheuring (2006) indepen-
dently obtained the result that the two conditonal mean
fixation times are the same in a particular game model of
Moran process. The symmetry does not hold when the
initial number of mutants is greater than 1.

In Section 3, we note that this symmetry does not hold
for models based on the Wright–Fisher process.

In Section 4, we generalize the symmetry of conditional
fixation times to a class of Markov processes, where only
states 1 and N � 1 can transition into absorbing states 0
and N, respectively. If the transition matrix further satisfies
the detailed balance condition, then the conditional
fixation time from state 1 to N has the same distribution
as that from state N � 1 to 0. In particular, the two
conditional fixation times have the same mean and
variance and also all the moments.

Our result holds for games on cycles (Nakamaru et al.,
1997, 1998; Nakamaru and Iwasa, 2005). Furthermore, our
result also applies to a wide range of imitation processes of
interest to economists (Ellison, 1993; Binmore and
Samuelson, 1997; Maruta, 2002), when the detailed balance
condition holds.

2. Fixation times in a Moran process

To illustrate the idea, we start with a frequency
dependent Moran process as described in Nowak et al.
(2004), Taylor et al. (2004). The payoff matrix for a game
with two strategies A and B is given in Table 1.

We have a population of N individuals, each individual
uses strategy either A or B. The number of individuals
using strategy A is given by i, and the fitness of individuals
using strategy A and B are, respectively, f i and gi, where

f i ¼ 1� wþ w
aði � 1Þ þ bðN � iÞ

N � 1
,

gi ¼ 1� wþ w
ci þ dðN � i � 1Þ

N � 1
, ð1Þ

w measures the strength of selection. The bigger the w is,
the stronger the selection.

The selection dynamics of this two strategy game with N

players can be formulated as a Moran process (Moran,
1962) with frequency dependent fitness. At each time step,
Table 1

Payoff matrix for a game with two strategies A and B

A B

A a b

B c d
an individual is chosen for reproduction proportional to its
fitness. One identical offspring is being produced which
replaces another randomly chosen individual. Thus the
population size, N, is strictly constant. The probability of
adding an A-offspring is i f i=ði f i þ ðN � iÞgiÞ. At each time
step, the number of A individuals can either increase by
one, stay the same, or fall by one. Therefore, the transition
matrix of the Markov process is tri-diagonal and defines a
birth–death process. The transition matrix is given by

Pi;iþ1 ¼ li ¼
i f i

i f i þ ðN � iÞgi

N � i

N
,

Pi;i�1 ¼ mi ¼
ðN � iÞgi

i f i þ ðN � iÞgi

i

N
,

Pi;i ¼ 1� Pi;iþ1 � Pi;i�1, (2)

for 0pipN. All other entries of the transition matrix are 0.
The probabilities, rA, of a single A player to reach

fixation in a population of B players, and rB, of a single B

player to reach fixation in a population of A players are
given, respectively, by (Karlin and Taylor, 1975)

rA ¼ p1 ¼
1

1þ
PN�1

j¼1

Qj
k¼1gk=f k

,

rB ¼ fN�1 ¼
1

1þ
PN�1

j¼1

QN�1
k¼j f k=gk

. ð3Þ

In general, we have rAarB. However, we have

Proposition 1. The conditional mean fixation time of a single

A mutant, tA, is the same as that of a single B mutant, tB, for

all levels of selection and for all games.

In other words, even if an A player is more likely to
fixate in a population of B players, than a B player in a
population of A players, the conditional mean time for a
single A player to take over the whole population is the
same as that for a single B player. The conditional mean
time to fixation for a single mutant is the same irrespective
of the direction of flow or the strength of selection, w.
In Fig. 1(a), the x-axis measures w which ranges from 0

to 1, and the y-axis measures the conditional mean fixation
time of a single mutant. We see that the conditional mean
fixation times for a single A mutant and a single B mutant
are identical for all w and for four different games: a
neutral game, a constant fitness game where A is dominant,
a bi-stable game, and a Hawk–Dove game.
In fact, we shall show in Appendix A that the probability

distributions of the conditional time to fixation for a single
mutant of either type A or B are the same. Therefore, the
mean, variance, and all other moments of the two
conditional fixation times are the same.
On the other hand, simulation shows that in general the

conditional fixation time of i A mutants is not the same as
that of i B mutants for weak or strong selection when i41
as explained later.
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Fig. 1. Conditional mean fixation time of a single mutant of strategy A

and B as a function of selection strength w for different payoff matrices.

N ¼ 5. (a) Moran process; the conditional mean fixation times of a single

A mutant is the same as that of a single B mutant for all w.

(b) Wright–Fisher process; the conditional mean fixation time of a single

A mutant (solid line) and that of a single B mutant (dashed line) are the

same for small w and different for large w.
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We calculate in Appendix B, tA ¼ tB for a Moran
process under weak constant and frequency dependent
selection.

3. Fixation time in a Wright–Fisher process

In a Wright–Fisher process, at each time step, the entire
population is replaced by a new generation of the same
size, its composition is determined by sampling with
replacement from the previous generation. If there are i

A players before reproduction, the number of A players
after reproduction is a binomial random variable
with index N and parameter i f i=ði f i þ ðN � iÞgiÞ. The
probability of having j A players after reproduction is

Pij ¼
N

j

 !
i f i

i f i þ ðN � iÞgi

� �j
ðN � iÞgi

i f i þ ðN � iÞgi

� �N�j

. (4)

Under strong selection, the conditional fixation time of a
single A mutant is not the same as that of a single B

mutant. Fig. 1(b) plots the conditional mean fixation time
of a single mutant using strategy A or B for the same four
games as in Fig. 1(a). Again, the x-axis measures the
strength of selection w, and the y-axis measures the
conditional mean fixation time. The solid lines plot the
times for A mutant, and dashed lines for B mutant. For
each of the three non-neutral games, as w increases, the two
conditional fixation times for A and B, and the correspond-
ing solid and dashed lines, diverge further apart.
Under weak and constant selection, using diffusion

theory Nei and Roychoudhury (1973), Maruyama (1974,
1977) and Ewens (2004) showed that a selectively
disadvantageous mutant, if destined for fixation, spends
as much time, on average, in any frequency range as a
correspondingly advantageous mutant destined for fixa-
tion. In particular, the conditional mean fixation time of a
single advantageous mutant is the same as that of a
corresponding deleterious mutant. We can even generalize
this symmetry result under weak selection to frequency
dependent selection for Wright–Fisher model. Fig. 1(b)
shows that when w is small, the conditional mean fixation
times of a single A mutant and a single B mutant are
approximately identical for four different games.
4. Generalization

Moran and Wright–Fisher processes are two examples of
a general Markov process on states 0; 1; 2; . . . ;N, with 0
and N being absorbing states. We have seen in Sections 2
and 3 that a single A mutant can reach fixation equally fast
as a single B mutant in a Moran process irrespective of
selection strength and game, while in a Wright–Fisher
process, this only holds when selection is weak.
We prove in Appendix A that

Proposition 2. For a Markov process P on 0; 1; 2; . . . ;N
state, where 0 and N are absorbing states, suppose Pi0 ¼ 0
for all iX2, and PjN ¼ 0 for all jpN � 2; furthermore P

satisfies the detailed balanced condition, i.e. there exist a

vector ~c ¼ ðc1; . . . ;cN�1Þ, where all entries are positive,
such that

Pijci ¼ Pjicj (5)

for 1pi; jpN � 1, then the distribution functions of the

conditional fixation time from state 1 to N and from state

N � 1 to 0 are the same. In particular, the conditional

fixation time from state 1 to N and from state N � 1 to 0
have the same mean and variance.
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It shall be clear from the proof in Appendix A that there
is only one state that can lead to each of the absorbing
states.

The principle of detailed balance is important in
describing equilibrium properties. When the detailed
balance condition is satisfied, the equilibrium can be
achieved in the sense that around any closed circuit, the
netflow is zero. In terms of the transition probabilities of a
Markov process, the detailed balance condition dictates
that around any circulation, the product of all the
transition probabilities along the loop is the same and
non-zero going counterclockwise and clockwise. The
detailed balance condition is also known as Kolmogorov
cycle condition, or Kolmogorov consistency condition.

Obviously, if P is symmetric, it satisfies the detailed
balance condition.

An important class of Markov processes which satisfy
detailed balance condition is the birth–death process,
whose transition matrix P is a continuant, satisfying the
condition that Pij ¼ 0 if ji � jj41. In particular, for a
Moran process discussed in Section 2, Proposition 1
follows immediately.

The principle of detailed balance is equivalent to the time
reversal property for Markov processes. For a Markov
process M admitting a stationary distribution
~C ¼ ðc0;c1; . . . ;cN Þ, where the ci’s are positive, M is
reversible if and only if it satisfies the detailed balance
condition ciMij ¼ cjMji for all i; j.

The Moran process, with selection as well as mutation is
reversible, since there exists a stationary distribution and it
satisfies the detailed balance condition. In contrast, the
Wright–Fisher process with selection and mutation is not
reversible, because it does not satisfy the detailed balance
condition. However, in diffusion approximation for a
Wright–Fisher process, Proposition 2 holds. Diffusion
approximation is in effect assuming weak selection and a
large population size. Proposition 2 does not hold for
Wright–Fisher process in general because it does not satisfy
the detailed balance condition, nor does it satisfy the
property that only one state can transition into each of the
two absorbing states.

It is important to note that for a Markov process
satisfying the conditions of Proposition 2, when
ia1;N � 1, the distribution of conditional time to absorp-
tion from state i to N is in general different from the
corresponding distribution from state N � i to 0. This will
be illustrated by the proof of Proposition 2 in Appendix A.

5. Discussions

We have shown in this paper that in a Moran process
describing evolutionary dynamics of two types, the
conditional time to absorption for a single mutant of
either type has the same probability distribution, hence the
same mean, variance and all other moments. This is a
consequence of the fact that the Moran process satisfies the
detailed balance condition on the intermediate states,
whereby equilibrium is achieved. Our symmetry result
does not hold for a Wright–Fisher process, except in the
diffusion limit of weak selection and large population.
Under the setting of a generalized Moran process, a

single deleterious mutant succeeds in taking over the
population of more favorable wild-type individuals as fast
as a single corresponding favorable mutant can take over a
population of weaker wild-type individuals.
A deleterious mutant goes into extinction most of the

time, but if it does succeed in replacing the population, it
spreads as fast as the corresponding single favorable
mutant. In contrast, while a single favorable mutant rarely
goes to extinction, under strong selection, it does not
succeed any faster.
Our symmetry result of conditional mean fixation time

does not hold if the mutant starts from multiple copies in
both Moran and Wright–Fisher models. If a group of
mutants is introduced, then it is in general faster for the
favorable mutants to succeed than for the corresponding
deleterious mutants to succeed. Fig. 2(a) shows the
conditional mean fixation times of two A mutants and
two B mutants for four different games in a Moran
process. The two times are different. The solid lines plot the
time for A, and dashed lines for B. We see that upon
fixation, the advantageous mutants fixate faster than
corresponding deleterious mutants; both fixate faster than
two neutral mutants, except when the game is Hawk–Dove.
Fig. 2(b) shows the conditional mean fixation times of two
A mutants and two B mutants for four different games in a
Wright–Fisher process. Again the two fixation times are
different, and for very weak selection, the two fixation
times are close.
In fact, our results can also be applied to the study of

evolutionary game dynamics on graphs, of which there is a
great deal of current interest (Nakamaru et al., 1997, 1998;
Nakamaru and Iwasa, 2005; Lieberman et al., 2005;
Ohtsuki et al., 2006). In the case of a cycle graph with N

nodes, the game dynamics starting from a single mutant
can be described by the Moran process. State 0 is all B, and
state N is all A; while state 1 corresponds to the set of
configurations where exactly one node plays A and the rest
play B; and similarly for state N � 1. Since the number of
mutants can increase or decrease by at most 1 at each time
step, the corresponding Markov process is a birth–death
process satisfying the detailed balance condition. Hence,
our result that the fixation time of a single mutant of either
strategy is the same holds for games on a cycle. For higher
dimensional torus type graphs or lattices, where symmetric
conditions guarantee that there is only a single state that
can transition into either of the two absorption states, we
still need to make sure that the detailed balance condition
satisfies, in order to apply our result.
Since our results on the equality of fixation time apply to

the class of Markov processes where the transition
probabilities on the immediate states satisfy the detailed
balance condition, it would be interesting to find examples
of such Markov processes, other than the Moran process,
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Fig. 2. Conditional mean fixation time of two mutants of strategy A and B

as a function of selection strength w for different payoff matrices. N ¼ 5.

(a) Moran process; the conditional mean fixation times of two A mutants

(solid line) and that of two B mutants (dashed line) are different for all

wa0. (b) Wright–Fisher process; the conditional mean fixation time of

two A mutants (solid line) and that of two B mutants (dashed line) are

different, however they are very close for small w.
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(e.g. lattices and higher dimensional torus with appropriate
transition matrix) which satisfy this equilibrium condition.
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Appendix A. General results

Consider a general Markov process on states
0; 1; 2; . . . ;N, where 0 and N are absorbing states, and P

is its transition matrix. Further, we add the constraint that
Pi0 ¼ 0 for all iX2, and PjN ¼ 0 for all jpN � 2. Hence,
there is only one way in to the absorbing states 0 and N.

Notations

pi the probability of reaching state N starting from state i

fi the probability of reaching state 0 starting from state i

uiðtÞ ¼ Probfreaching state N starting from state
i at time ¼ tg

viðtÞ ¼ Probfreaching state 0 starting from state i

at time ¼ tg

u�i ðtÞ ¼ Probfreaching state N starting from state i

at time ¼ t conditional upon fixationg ¼ uiðtÞ=pi

v�i ðtÞ ¼ Probfreaching state 0 starting from state i

at time ¼ t

conditional upon fixationg ¼ viðtÞ=fi

ti the unconditional mean time to reach either state 0 or N

from state i

t�i the mean time to reach state N from state i conditional

upon fixation at state N

s�i the mean time to reach state 0 from state i conditional

upon fixation at state 0
tij the mean sojourn time in state j before absorption into

state 0 or N starting from state i

t�ij the mean sojourn time in state j before absorption

into state N starting from state i conditional upon reaching
state N

s�ijthe mean sojourn time in state j before absorption

into state 0 starting from state i conditional upon reaching
state 0

Let Tr denote transposition, define

~p ¼ ðp1; . . . ;pN�1Þ
Tr; ~f ¼ ðf1; . . . ;fN�1Þ

Tr,

~uðtÞ ¼ ðu1ðtÞ; . . . uN�1ðtÞÞ
Tr,

~vðtÞ ¼ ðv1ðtÞ; . . . ; vN�1ðtÞÞ
Tr.

Clearly,

p0 ¼ 0; pN ¼ 1; f0 ¼ 1; fN ¼ 0,

t�0 ¼ 1; t�N ¼ 0; s�0 ¼ 0; s�N ¼ 1.

From now on, we will work with the ðN � 1Þ � ðN � 1Þ
submatrix of the original Markov matrix P with its first
and last rows and columns removed, i.e. P is just the
transition matrix on states 1 through N � 1.
First, we find that

~p ¼ ðI � PÞ�1PN�1;NeN�1; ~f ¼ ðI � PÞ�1P10e1, (A.1)

where I is the ðN � 1Þ � ðN � 1Þ identity matrix.
It is important that P0i ¼ 0 for i41 and PN;j ¼ 0 for

joN � 1 here and in the proof of Proposition 2.
The matrix ðI � PÞ�1 ¼

P1
n¼0 Pn is called the funda-

mental matrix of the matrix P. The mean waiting time, tij,
in state j before absorption into state 0 or N starting from
state i is given by ðI � PÞ�1ij and ti ¼

PN�1
j¼1 tij.
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The conditional waiting time in state j before absorption
into state N starting from state i, t�ij, is given by tijpj=pi.

We have

u�i ðtÞ ¼
Pt�1

i;N�1

ti;N�1
; v�i ðtÞ ¼

Pt�1
i;1

ti;1
. (A.2)

Proof of Proposition 2. LetC be the diagonal matrix whose
diagonal entries are given by c1;c2; . . . ;cN�1. The detailed
balanced condition is just

C�1PC ¼ PTr,

u�1ðtÞ ¼
Pt�1
1;N�1

t1;N�1
¼
ðPTrÞ

t�1
N�1;1

ðI � PTrÞ
�1
N�1;1

¼
ðC�1PCÞt�1N�1;1

ðI �C�1PCÞ�1N�1;1

¼
ðC�1Pt�1CÞN�1;1
ðC�1ðI � PÞ�1CÞN�1;1

¼
Pt�1

N�1;1c
�1
N�1c1

tN�1;1c
�1
N�1c1

¼
Pt�1

N�1;1

tN�1;1

¼ v�N�1ðtÞ &

Since

t�ij ¼
ti;j tj;N�1

ti;N�1
; s�ij ¼

ti;j tj;1

ti;1
, (A.3)

we can similarly show that

t�1j ¼ s�N�1;j (A.4)

for all 1pjpN � 1, namely, the conditional mean sojourn
time at state j starting from state 1 and starting from state
N � 1 are the same.

Since the distributions of conditional fixation time are
the same, i.e. u�1ðtÞ ¼ v�N�1ðtÞ, we have that the conditional
mean times to absorption from state 1 to N and from state
N � 1 to 0 are the same:

t�1 ¼ s�N�1 ¼
ðI � PÞ�21;N�1

t1;N�1
. (A.5)

For a continuant matrix P, where Pij ¼ 0 if ji � jj41.
Let Pi;iþ1 ¼ li, and Pi;i�1 ¼ mi, l0 ¼ mN ¼ 0. We can write
down the expressions for t�1, s�N�1, t�1j, and s�N�1;j explicitly
(Karlin and Taylor, 1975; Ewens, 2004). Let

rj ¼
Yj

k¼1

mk

lk

; r0 ¼ 1

then

t�1j ¼
pjð1� pjÞ

p1rjlj

; s�N�1;j ¼
pjð1� pjÞ

p1rj�1mj

. (A.6)

Using these formulae, we can calculate tA; tB in
Appendix B.

It is important to note that for transition matrices
satisfying the detailed balance condition,

u�i ðtÞav�N�iðtÞ; 2pipN � 2. (A.7)
in general. In particular, since

t�i ¼
ðI � PÞ�2i;N�1

ti;N�1
; s�N�i ¼

ðI � PÞ�2N�i;1

tN�i;1
, (A.8)

the conditional mean fixation times

t�i as�N�i (A.9)

in general.

Appendix B. Conditional mean fixation times for Moran

process under weak selection

In the special case of constant selection, where A has
constant fitness r ¼ 1þ w41, and B has constant fitness 1,
we have rA4rB. For weak selection (w51=N), we
calculate that

tA ¼ tB ¼ NðN � 1Þ 1�
ðN þ 3ÞðN � 2Þ

72
w2 þ oðw2Þ

� �
.

(B.1)

In particular, for large N, we have

tA ¼ tB ’ N2 1�
N2w2

72

� �
.

Therefore, the fixation time of a single mutant of either
strategy is reduced by ðN þ 3ÞðN � 2Þw2=72 compared to
the fixation time of a neutral mutant. For r41, one A

player is more likely to fixate among B players than vice
versa. We certainly expect that it would take shorter time
for A to fixate than a neutral mutant. Moreover, a single B

player also takes the same shorter time span than a neutral
mutant to fixate in a population of A players, although the
relative fitness of B is smaller than that of A.
Under weak frequency dependent selection, we find that

tA ¼ tB ¼ NðN � 1Þ 1þ w
gNðN � 2Þ

36ðN � 1Þ
þ oðwÞ

� �
, (B.2)

where g ¼ bþ c� a� d and d ¼ a� d þ ðd � bÞN. For
large N, we have

tA ¼ tB ’ N2 1þ
gwN

36

� �
.

Hence even when strategy A dominates B, B fixates in a
population of A players equally fast as A fixates among B

players. For bi-stable games, a4c and bod, the fixation
time for a single A or B player is shorter than that of a
neutral mutant. For Hawk–Dove games, aoc and b4d,
the fixation time is longer than that of a neutral mutant.
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