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Abstract

Viruses like the human immunodeficiency virus (HIV), the hepatitis B virus (HBV), the hepatitis C virus (HCV) and many others

undergo numerous rounds of inaccurate reproduction within an infected host. The resulting viral quasispecies is heterogeneous and

sensitive to any selection pressure. Here we extend earlier work by showing that for a wide class of models describing the interaction

between the virus population and the immune system, virus evolution has a well-defined direction toward increased pathogenicity.

In particular, we study virus-induced impairment of the immune response and certain cross-reactive stimulation of specific immune

responses. For eight different mathematical models, we show that virus evolution reduces the equilibrium abundance of uninfected

cells and increases the rate at which uninfected cells are infected. Thus, in general, virus evolution makes things worse. An idea for

combating HIV infection, however, is constructing a virus mutant that could outcompete the existing infection without being

pathogenic itself.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Virus evolution as mechanism of disease progression
in human immunodeficiency virus (HIV) infection has
been a common theme for the last 15 years (Nowak et
al., 1990, 1991, 1995; De Boer and Boerlijst, 1994;
Sasaki, 1994; Regoes et al., 1998; Nowak and May,
2000; Iwasa et al., 2004). The basic theoretical idea is
that a rapidly replicating HIV quasispecies establishes a
permanent infection that goes through many viral
generations within a short time. The immune system
mounts responses to various viral epitopes, but the virus
population escapes from many such responses by
generating mutants that are not recognized in particular
epitopes. During the cause of infection, virus evolution
proceeds toward increasing pathogenicity by reducing
e front matter r 2004 Elsevier Ltd. All rights reserved.
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immune control and increasing viral abundance. There
is ample experimental evidence for this mode of disease
progression: (i) the HIV population in any one infected
host is fairly homogeneous during primary phase and
heterogeneous afterwards (Nowak et al., 1991; Holmes
et al., 1992; Bonhoeffer and Nowak, 1994; Bonhoeffer et
al., 1995; Wolinsky et al., 1996); (ii) the average life cycle
of HIV during the asymptomatic phase of infection is
short, about 1–2 days (Wei et al., 1995; Ho et al., 1995;
Perelson et al., 1996; Bonhoeffer et al., 1997); hence the
HIV quasispecies can rapidly respond to selection
pressure; (iii) HIV escapes from B-cell- and T-cell-
mediated immune responses (Phillips et al., 1991;
Nowak et al., 1995; Borrow et al., 1997; Goulder et al.,
2001; Wei et al., 2003; Addo et al., 2003).
In a previous paper (Iwasa et al., 2004), we analysed

models for the evolutionary dynamics of virus or other
infectious agents within a host. We mathematically
examined how the invasion of a new strain affects the
composition and diversity of viral population in a host.

www.elsevier.com/locate/yjtbi
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We showed that—under strain specific immunity—the
equilibrium abundance of uninfected cells always
declines during viral evolution. In addition, for cyto-
toxic immunity the absolute force of infection, and for
non-cytotoxic immunity the absolute cellular virulence
increases during viral evolution. However, we could also
illustrate by two examples that these unidirectional
trends of virus evolution under immune selection do not
hold for general cross-reactive immune responses, which
introduce frequency-dependent selection among viral
strains.
In the present paper as a sequel to Iwasa et al. (2004),

we show that, for some classes of models with virus-
induced impairment of immune responses or cross-
reactive immune stimulations, the same directional
evolutionary trends hold as in the models without
cross-immunity. These classes includes several different
models studied in Regoes et al. (1998) with small
modifications. We can also prove that these hold for
models with cross-immunity, in which the abundance of
a strain would enhance (rather than impair) the immune
activities on other strains. We will discuss different
functional forms of immune activation (De Boer and
Perelson, 1995, 1998).
2. Model of immune impairment

We consider the following situation. Initially there are
a certain number of strains coexisting in the system at
equilibrium. Then a strain which is currently absent
invades the system with a very small initial abundance.
It may increase or decrease. If it increases, it may be
included as an additional strain, increasing strain
diversity. Alternatively, the invasion of a new strain
may cause the extinction of one or more of the resident
strains.

2.1. Model 1: cross-reactive immune impairment

Consider the following model of the virus–immunity
dynamics:

dx

dt
¼ l� dx �

Xn

i¼1

biyix; (1a)

dyi

dt
¼ ðbix � ai � piziÞyi; (1b)

dzi

dt
¼ ciyi � bizi 1þ u

Xn

j¼1

bjyj

 !
; (1c)

where x is the number of uninfected cells, yi is the
number of cells infected by viral strain i, and zi is the
intensity of immune reaction specific to viral strain i.

Eq. (1a) indicates that the uninfected cells are supplied
at a constant rate l but will decay at rate d. The third
term of Eq. (1a) is the rate at which uninfected cells
become infected at a rate proportional to yi: bi is the rate
of transmission of strain i. Here we do not model the
dynamics of free viral particles explicitly, but we simply
assume that the number of free viral particles would be
proportional to the number of cells infected. This is
valid as the number of free vial particles would change
at a much shorter time-scales than those variables in
Eq. (1) (Perelson et al., 1996; Ho et al., 1995; Regoes
et al., 1998; Iwasa et al., 2004).
Eq. (1c) indicates that the immunity specific to viral

strain i is activated at a rate proportional to the
abundance of uninfected cells yi and hence proportional
to the number of free viral particles. The decay rate is
not a constant but an increasing function of the total
abundance of virus, bið1þ u

Pn
j¼1bjyjÞ: This assumption

represents the effect that any viral strain impairs to some
degree immune activity against other viral strains.
Now we consider the following situation. Initially

there are one or a few strains in the host body, which
may be maintained at equilibrium. Then a new strain is
created by the mutation of an existing strain. The new
invader is initially very rare, and it may just go extinct.
But it may increase its abundance. If so, it may coexist
with the resident strains, but it also may drive some of
the resident strains to extinction, realizing a new
equilibrium with a fewer coexisting strains. Over many
years, a number of events of invasion of new strains
occur possibly followed by change in the strain
composition.
We ask whether or not there is any systematic

difference between the equilibrium after the invasion
of a new strain followed by the replacement and the one
before the invasion. If so, we may be able to identify a
unidirectional evolutionary trend of virus controlled by
immune selection. Iwasa et al. (2004) examined the
model Eq. (1) with u ¼ 0; and proved mathematically
that the successful invasion of a new strain always
decreases the equilibrium abundance of uninfected cells,
and always increases the total force of infectionPn

i¼1biyi: Based on a similar logic, we can prove the
same evolutionary trend to hold for the model given by
Eq. (1), which includes cross-reactive immune impair-
ment (u40). To clarify, we state this as the following
proposition:

Proposition 1. In the model given by Eq. (1), after a new

strain succeeds in invasion, the equilibrium abundance of

uninfected cells x always becomes less than the level

before the invasion. The equilibrium total force of

infection
Pn

i¼1biyi always increases after such an evolu-

tionary change.

In Iwasa et al. (2004), the global stability of the
equilibrium is proved using a Lyapunov function for the
system with u=0 in Eq. (1). However, it is not possible
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Fig. 1. Graphical representation of Eqs. (3) and (4) for a population

before and after the invasion of a new strain. The model is given by Eq.

(1). Broken curve is for the population with strains 1 and 3. Solid curve

for the population with strain 2 is added. Three arcs connected by kink

is Eq. (3), indicating per capita risk of uninfected cells. The curves with

negative slopes are Eq. (4), with different l: Horizontal axis is the

abundance of uninfected cells x. P and Q are for the equilibrium

corresponding to different values of l; both including two strains.

After invasion of strain 2, Eq. (3) would change to a solid curve and

the equilibrium would shift to P0 and Q0. All three strains coexist in P0.

But strain 3 is replaced by strain 2 in Q0.
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to construct a Lyapunov function for the general case of
u40. Here we simply assume that the equilibrium is
stable, and if the new equilibrium is created after
invasion, the system converges to it. This assumption is
consistent with all the results of numerical analyses we
have done. We examine the change in the equilibrium
caused by the invasion of a novel strain, given the global
stability.
Let Y ¼

Pn
i¼1biyi: From Eqs. (1b) and (1c), we can

express the equilibrium abundance of infected cells and
its specific immune activity as functions of x and Y:

yi ¼
bi

cipi

ð1þ uY Þ½bix � ai�þ; (2a)

zi ¼
1

pi

½bix � ai�þ; (2b)

where ½x�þ ¼ x; for x40; and ½x�þ ¼ 0; for xp0: Hence
the equilibrium abundance of infected cells is a function
of uninfected cell abundance x, and the total intensity
of immune reaction Y. Combining Y ¼

Pn
j¼1biyi with

Eq. (2a), we have

Y

1þ uY
¼
Xn

i¼1

bibi

cipi

½bix � ai�þ (3)

at equilibrium. From, Eq. (2a), yi is zero forxpai=bi;
but is positive and an increasing function of x for
x4ai=bi: The minimum level of uninfected cells that is
needed to sustain virus strain i is by ai=bi: On the other
hand, Eq. (1a) indicates that Y ¼ ðl=xÞ � d holds at
equilibrium. Hence, we have

Y

1þ uY
¼

l� dx

ulþ 1� udð Þx
: (4)

The right-hand side of Eq. (3) is a sum of increasing
functions, and hence it is also an increasing function of
x. In contrast Eq. (4) is a decreasing function of x. It is
equal to 1=u at x=0, and to 0 at x ¼ l=d:Hence, there is
always a single positive solution x* at which Eq. (3) is
equal to Eq. (4). x� is the equilibrium number of
uninfected cells.
Fig. 1 plotted Eq. (3) and Eq. (4), in which the

horizontal axis is x, and the vertical axis is Y=ð1þ uY Þ:
Eq. (3) is a piecewise straight line with a positive slope.
Eq. (4) appears as a curve with a negative slope. Using
graphical representation of Eqs. (3) and (4), we can
show the equilibrium solution x�; its parameter depen-
dence, the condition for invasibility of a new strain, and
the outcome of a successful invasion.
The possibility of invasion of a new strain into the

population and its outcome can be known from figures
such as Fig. 1. After invasion, Eq. (3) increases by
bjyj xð Þ: If the population before the invasion of strain j

has a level of uninfected cells less than aj=bj ; the
invasion is not successful. If instead the level of
uninfected cells before the invasion is greater than
aj=bj ; then strain j can increase. As an outcome of
invasion, the cross-point would shift to above, and
hence toward left. Hence the level of uninfected cells x

becomes smaller than before the invasion, and Y=ð1þ
uY Þ is larger than before the invasion, and hence Y ¼Pn

i¼1biyi should increase.
Fig. 1 illustrates the situation where two strains

(strains 1 and 3) exist in the initial population, and then
strain 2 invades it (a1=b1oa2=b2oa3=b3). The broken
curve in Fig. 1 is for the population before the invasion
including strains 1 and 3 only. It consists of three arcs
connected by kinks. Two curves with negative slopes are
Eq. (4) for different levels of l: Both P and Q are the
communities with two strains. Strain 2 with an inter-
mediate value of a2=b2 is added to the population.
Consider the case in which population indicated by P

is realized before the invasion of strain 2. When the
strain 2 invades, the equilibrium would be shifted to P0

in which all the three strains coexist because the new
cross-point is larger than ai=bi of these strains. In this
case the outcome of invasion is simply the addition of a
new strain 2 without extinction of the resident strains. If
the population before invasion is the one indicated by Q
with strains 1 and 3. The outcome of the invasion of
strain 2 is the one indicated by Q0 in which strains 1 and
2 coexist, but strain 3 is not maintained. This implies
that the invasion of strain 2 is successful, but it drives
strain 3 to extinction—the replacement of strain 3 by
strain 2 occurs. The new level of uninfected cells x is too
low for the strain 3 to be maintained.



ARTICLE IN PRESS
Y. Iwasa et al. / Journal of Theoretical Biology 232 (2005) 17–2620
From these arguments, we can see the following: (1)
The invasibility of a novel strain is determined by
whether or not the equilibrium abundance of uninfected
cells before the invasion is greater than ai=bi (invasible if
x�

before4ai=bi; not invasible otherwise). (2) As the result
of a successful invasion, the location of the equilibrium
would move upward and the abundance of uninfected
cells downward (x�

afterox�
before). (3) If x� moves less than

the threshold for some resident species x�
after4aj=bj ; they

should go extinct, while those species would remain
positive if x�

afteroaj=bj is satisfied. As a result of
invasion, the equilibrium intensity of immune reaction
Y increases, but the number of strains maintained in the
system may increase or remain unchanged or decrease.
A more rigorous proof will be given in a later section.

Before giving a formal proof, we would like to explain
several different models of cross-immunity in which a
similar evolutionary trend holds.
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Fig. 2. Graphical representation of Eqs. (7) and (4) for a population

before and after the invasion of a new strain. The model is given by Eq.

(1a), (1b) and (5). Eq. (7) is a step-like function. Broken curve is for the

population with strain 1 and strain 3. Solid curve for the population

with strain 2 is added. The curves with negative slopes are Eq. (4), with

different l: Horizontal axis is the abundance of uninfected cells x. P

and Q are for the equilibrium corresponding to different values of l;
both including two strains. After invasion of strain 2, Eq. (7) would

change to a solid curve. The equilibrium P remains the same on this

graph, but now includes three strains. But the uninfected cell number

(horizontal axis x) does not change. In contrast Q will shift to Q0, and

the strain 3 is replaced by strain 2 and the equilibrium number of

uninfected cell x decreases (moves toward left) after invasion.
3. Alternative models of immune system interaction

In this section, we explain several alternative models
in which immune reaction to different strains interact,
for which we will later prove a statement similar to
Proposition 1.

3.1. Model 2: same as model 1 but with a proportional

activation term

We may consider the following dynamics of immune
cells:

dzi

dt
¼ ciyi � bi 1þ u

Xn

j¼1

bjyj

 ! !
zi: (5)

In this model, immune cells that are specific against
virus mutant i are activated at a rate, ciyizi; which is
proportional to the product of virus abundance and
immune cell abundance (Nowak and Bangham, 1996).
Müller et al. (2001) discussed the difference in behavior
between the immune dynamics with Eq. (1c) and those
with Eq. (5). The second term within the brackets of
Eq. (5) implies that the mortality of immune cells
increases with general activity of viral load (u

Pn
i¼1biyi).

In the absence of this effect (u=0), Eq. (5) is the same as
model 3 in Iwasa et al. (2004). It is also similar to a
model by Regoes et al. (1998), but they differ in two
points: First, the impairment of immune reaction was
assumed as a function of

Pn
i¼1yi in Regoes et al., but it is

a function of
Pn

i¼1biyi in this model. Second, the
parameters ai; pi; ci were assumed common among
strains (no suffix) in Regoes et al., but they can differ
between strains in Eq. (5).
The equilibrium abundance of yi can be expressed as a

function of uninfected cell number x and the intensity of
total immunity Y:

Case 1 : for x4
ai

bi

; yi ¼
bi

ci

ð1þ uY Þ; zi ¼
bi

pi

x �
ai

bi

� �
;

(6a)

Case 2 : for x ¼
ai

bi

; 0oyio
bi

ci

ð1þ uY Þ; zi ¼ 0;

(6b)

Case 3 : for xo
ai

bi

; yi ¼ zi ¼ 0: (6c)

The graphical representation is useful. On a ðx; yiÞ-
plane, with fixed Y, equilibrium condition Eq. (6) is
represented as three straight lines with a step-like form.
yi is a continuous function of x except for a single point
x ¼ ai=bi; at which yi can take any value within an
interval 0oyioðbi=ciÞð1þ uY Þ; which appears as a
vertical line. Fig. 2 illustrates an example. Eq. (3) now
becomes

Y

1þ uY
¼
Xn

i¼1

bibi

ci

H x �
ai

bi

� �
þ

; (7)

where H x½ � ¼ 1; forxX0 and H x½ � ¼ 0; forxo0 is a
Heaviside function. Eq. (7) can be used except for ai=bi

(i=1, 2,y, n), at which one of yi is discontinuous. When
the right-hand side is discontinuous, we can interpret
Eq. (7) as indicating that Y=ð1þ uY Þ is between the
limit from below and the limit from above of the right-
hand side.
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We assume that species differ in discontinuous points
(ai=bi). Then there is at most one species that might
cross the curve if Eq. (4) and vertical line of x ¼ ai=bi;
all the other species are either x4ai=bi or xoai=bi at
equilibrium. This makes a slight modification to
Proposition 1. There can be the situation in which a
new strain invades successfully and replace the resident,
and yet the abundance of uninfected cells x remains
exactly the same as before. Graphical representation of
Eqs. (7) and (4) is shown in Fig. 2. Here equilibrium P
did not change, and the equilibrium number of
uninfected cells (x�) remains the same as before. But a
new strain is added without extinction of the residents.
In contrast, equilibrium Q would shift to Q0 after the
invasion of strain 2, which causes the extinction of strain
3 and x� becomes smaller than before. Note that a
similar situation was discussed in Iwasa et al. (2004).
However, the equilibrium abundance of the uninfected
cells should not increase after a successful invasion, it
either decreases or remains unchanged. As a result, the
value of Y ¼

Pn
i¼1biyi also either increases or remains

unchanged after a successful invasion, respectively. We
summarize the result as follows:

Proposition 2. If the invasion of a new strain is successful,

the equilibrium abundance of uninfected cells x never

increases in the evolutionary change. It either decreases or

remains the same as before. The equilibrium total force of

infection
Pn

i¼1biyi either increases or remains the same as

before, respectively.

3.2. Model 3: impairment of immune cell activation

Regoes et al. (1998) also consider the case in which the
immune system impairment appear as a factor reducing
the rate of immune activation:

dzi

dt
¼

ciyi

1þ u
Pn
j¼1

bjyj

� bi

0
BBB@

1
CCCAzi: (8)

In this model, all virus mutants contribute with different
efficiency, bj ; to impairment of immune cell activation.
For this model too, we can prove Proposition 2.

3.3. Model 4: cross-reactive immune activation

In all the models of interaction between immune
systems to different strains so far, the presence of a
strain impairs the immune reaction of other strains. This
may be plausible for HIV infection because infection of
one strain would impair the general immune system.
A common way of interaction between different

immune reactions is cross-immunity, in which an
antigen stimulates the immune reaction of other
antigens that are similar to the original one. To
represent this, we consider

dzi

dt
¼ ciyi 1þ u

Xn

j¼1

bjyj

 !
� bizi: (9)

Here, the presence of any strain would reduce the
equilibrium abundance of all the other strains. For
dynamics with Eq. (1a), (1b), and Eq. (9), Proposition 1
holds. In fact, as we show later, the proof of the
proposition is easier for cross-immunity models than the
models with immune impairment.
3.4. Model 5: cross-immunity with an alternative form

We can also consider the following form:

dzi

dt
¼ ciyi 1þ u

Xn

j¼1

bjyj

 !
� bi

 !
zi; (10)

which is an alternative form of cross-immunity. For
model with Eqs. (1a), (1b), and (10), we can prove
Proposition 2.
4. Proof of directional evolution

To prove the directionality of the evolutionary
process, as stated in Propositions 1 and 2, we consider
the following general model in which immune reaction
to different strains interact. Let Y ¼

P
i2A

biyi:

dx

dt
¼ l� dx � xY ; (11a)

dyi

dt
¼ yif iðx; yi; Y ; ziÞ; i ¼ 1; 2; . . . ; n; (11b)

dzi

dt
¼ giðx; yi; Y ; ziÞ; i ¼ 1; 2; . . . ; n: (11c)

Let A be a set of strains (A � f1; 2; 3; . . . ; ng). Suppose
there is an equilibrium formed by a group of strains in
set A. Let x� and Y � be the equilibrium number of
uninfected cells and the total force of immunity. We
further assume that, starting from any point in which all
the strains in A have a positive abundance, it will
converge to the equilibrium (i.e. it is globally stable).
From the equilibrium condition of the dynamics

equations (11b) and (11c), we can calculate yi and zi as a
function of x and Y. In the situation for Proposition 1 to
hold, such as the model given by Eq. (1), the equilibrium
is a continuous function of x and Y. Here we first
concentrate on such a situation (the cases in which yi is a
step function of x will be handled later). We denote the
equilibrium abundance of cells infected by strain i by

yi ¼ fiðx; Y Þ; (12)
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which is calculated from Eqs. (11b) and (11c). In the
equilibrium of the whole system Eq. (11), we have:

Y � ¼
X
i2A

bifiðx
�; Y �Þ (13)

from the definition of Y. From Eq. (11a), we also have

Y � ¼
l
x�

� d (14)

at equilibrium.
Strain i has a positive abundance at equilibrium if x�

is greater than ai=bi; the minimum x for strain i to
maintain. If the level of x� is too high, some of the
strains in set A may go extinct in the equilibrium. We
have
Strain i has a positive abundance at equilibrium, if

fiðx
�;Y �Þ40: (15a)

Strain i is absent at equilibrium, if

fiðx
�;Y �Þ ¼ 0: (15b)

In a similar manner, we can express the invasion
condition in terms of f: When a strain k which is not
in A invades the equilibrium, whether or not it increases
can be judged by the sign of fkðx

�; Y �Þ:
Strain k can invade the equilibrium, if

fkðx
�; Y �Þ40; (16a)

Strain k fails to invade the equilibrium, if

fkðx
�; Y �Þ ¼ 0 (16b)

To discuss the outcome of a successful invasion, we
assume the following two conditions:

Condition 1: fiðx; Y Þð1=Y Þ is a decreasing function of
Y if fiðx; Y Þ40:

Condition 2: fiðx; Y Þ is continuous and non-increas-
ing function of x.

In Appendix A, we can prove the following Theorem 1.

Theorem 1. If Conditions 1 and 2 are satisfied, after a

successful invasion of a strain, the equilibrium abundance

of uninfected cells x becomes smaller than the level before

the invasion. The total rate of infection,
P

i2Abiyix,

increases by invasion.

Note that the increase in
P

i2Abiyix implies the
increase of per capita rate of infection Y ¼

P
i2Abiyi;

because x decreases by the invasion. Hence from
Theorem 1, we can conclude Proposition 1. Eqs. (1c)
and (9) satisfy the conditions above, and hence
Proposition 1 holds (see Appendix B).

4.1. When equilibrium yi is a step function of x

For the model Eq. (1a), (1b) combined with immunity
dynamics given by Eqs. (5), (8), or (10), yi is not a
continuous function of x, and hence Condition 2 is
not satisfied. However yi is expressed as Eq. (12)
except for a single point x ¼ ai=bi; at which yi is
not specified but takes any value between the maximum
and the minimum, exemplified by Eq. (6b). We here
assume that ai=bi differ between species. At x ¼

ai=bi ði ¼ 1; 2; . . . ; nÞ; the right hand of Eq. (13) is
discontinuous. Then, we use the following inequality
instead of Eq. (13):X
i2A

bifiðx � 0; Y ÞpYp
X
i2A

bifiðx þ 0; Y Þ: (17)

We summarize these as follows:
Condition 3: fi x;Yð Þ is continuous and non-increasing

function of x except for a single point x ¼ ai=bi; in
which it is not defined. We have fi x;Yð Þ ¼ 0 for
xoai=bi; and fi x;Yð Þ40 for x4ai=bi: At x ¼ ai=bi;
we have Eq. (17).
In Appendix A, we can prove the following Theorem 2.

Theorem 2. If Conditions 1 and 3 are satisfied, after a

successful invasion of one or more strains, the equilibrium

abundance of uninfected cells x either decreases from the

level before the invasion or remains the same. The

equilibrium rate of infection,
P

i2Abiyix, increases or

remain the same, respectively.

In Appendix B, we can show that these conditions are
met for the models with Eqs. (1a) and (1b), together with
the immunity dynamics given by Eqs. (5), (8), or (10).
For these models, Theorem 2 holds, and hence
Proposition 2 holds, because the increase in Y ¼P
i2A

biyi is derived from the increase in
P
i2A

biyix:
5. Target cells are helper T-cells

HIV infects CD4+ T helper cells. By depleting this
target cell population, HIV impairs immune responses.
In this section, we therefore assume that uninfected
target cells, x, are needed for immune activation
(Wodarz et al., 1999; Wodarz and Nowak, 2000; Wahl
et al., 2000). We consider models in which the dynamics
of specific immune cells depends directly on the number
of uninfected cells. Suppose immune activation requires
the presence of a sufficiently many helper T-cells in the
tissue but the shortage of uninfected helper T would
cause the general decrease in the immune activity for all
the antigens. This can be expressed as the immune
activation rate dependent directly on the uninfected cell
number x.
5.1. Model 6

dzi

dt
¼ ziðciyix � biÞ; i ¼ 1; 2; . . . ; n: (18)
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In Eq. (18) the stimulation of immune reaction is
proportional to the abundance of uninfected cells x.
This was called ‘‘target cell dependence in immune
activation’’ by Regoes et al. (1998). If a strain is
abundant, it infects and reduces uninfected cell number
x, which causes the decrease of the immune activation
for all the other strains. Hence Regoes et al. regarded
this as a way of introducing immune impairment, and
also called it ‘‘indirect impairment model’’. We can
prove that, for the model with immune dynamics
Eq. (18), Proposition 2 holds.
We may also think the system in which Eq. (18) is

replaced by the following:
x
a1

β1

0
a 2

β2

Fig. 3. Graphical representation of both sides of Eq. (22), in which

cross-points are for the equilibria of dynamics Eqs. (1a), (1b), and (20).

There are three equilibria. Numerical analysis shows that P and R are

locally stable and Q with an intermediate x* is unstable. The system is

bistable, and the evolutionary trends suggested by Propositions 1 and 2

do not hold for this system.
5.2. Model 7

dzi

dt
¼ ciyix � bizi; i ¼ 1; 2; . . . ; n: (19)

The model, given by Eqs. (1a), (1b) and (19), satisfies the
condition for Theorem 1, and hence we have Proposi-
tion 1. The equilibrium abundance of uninfected cells
decreases and the Y ¼

P
i2Abiyi increases after a

successful invasion of a mutant.
5.3. Bistability

In contrast, consider the case in which the target cell
dependence is of impairment type, and the degree of the
dependence is stronger than the one assumed by Eq.
(18). For example,

dzi

dt
¼ ziðciyix

2 � biÞ; i ¼ 1; 2; . . . ; n; (20)

instead of Eq. (18). The equilibrium number of cells
infected by strain i is:

yi ¼

bi

x2ci
for x4ai=bi;

0 for xoai=bi:

(
(21)

The equilibrium is determined by a solution of the
following equality:

l� dx ¼
1

x

b1b1
c1

H x �
a1

b1

� �
þ

b2b2
c2

H x �
a2

b2

� �� �
;

(22)

where H is the Heaviside function. In the case illustrated
in Fig. 3, there are three equilibria—the one in the
middle is unstable, and the smallest possible and the
largest possible equilibria are both stable. Hence the
model constituting Eqs. (1a), (1b), and (20) is bistable.
This makes global stability impossible. Note that
bistability in immune system due to a different mechan-
ism was reported (Altes et al., 2003).
6. Discussion

In this paper, we studied the evolution of virus within
a patient by analysing a series of models for the
dynamics of multiple strains of virus and the immune
activities of the host corresponding to those strains. In
all of these, the immune activities to different antigens
interact. We study both the case in which immune
reaction to an antigen impairs the immune reaction to
other antigens and the case in which the presence of an
antigen stimulates the immune activity to other antigens
(cross-immunity). In all the models studied in the
present paper, the directional trends of virus evolution
is proved, which were shown previously for the models
without cross-immunity (Iwasa et al., 2004).
The result suggests that the equilibrium abundance of

uninfected cells decreases monotonically in the viral
evolution occurring within a host if controlled by
immune selection. It also suggests that the total force
of infection increases monotonically with the evolu-
tionary changes of viral strain composition. The strain
diversity may increase and the mean virulence of the
virus may increase statistically, but the two tendencies
we proved in the twin paper and the present one are the
changes that always occur in those directions.
Regoes et al. (1998) studied by computer simulation

of several different models in which the presence of a
virus strain impair or suppress the immune reaction on
other strains. For all the models studied by Regoes
et al., we study a slightly modified version in the present
paper. The modification is on the assumption of
impairment function—the rate of immune activation
or decay is a function of the total number of infected
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cells (
Pn

i¼1yi) in Regoes et al., but the total force of
infection (

Pn
i¼1biyi) in the present paper. In addition,

several parameters fixed by Regoes et al. can differ
between strains in this paper.
Although Regoes et al. (1998) focused the case with

immunity impairment type, we can extend our result to
the case with cross-immunity—in which the presence of
one strain activates, rather than impairs, the immune
reaction to other strains. When cross-immunity is at
work, the increase of general viral abundance should
reduce the increase rate of each viral strain, and hence
yi ¼ fiðx; Y Þ is likely to be a decreasing function of Y.

Hence Condition 1 is likely to satisfy cross-immunity
models. In contrast, models with immune impairment
has yi ¼ fiðx; Y Þ an increasing function of Y, as
exemplified by Eqs. (2a) and (6). If the impairment
effect is very strong, Condition 1 is not satisfied, and we
will not obtain the directional evolution suggested by
Propositions 1 and 2. This is shown by the case with Eq.
(20), which has bistability (see Fig. 3). Hence the
condition for Propositions is easier to satisfy in the
models with cross-immunity than in the ones with
immune impairment.
Whether or not the conditions required for Proposi-

tions 1 and 2 are sufficiently close to those observed in
real immune systems is certainly an important question
to study in the future in theoretical immunology.
However, given that there is a group of models
describing the interaction between immune reaction to
different strains, in which the evolution of virus
population within a single patient is the monotonic
increase in pathogenicity, we may be able to have a
simple picture of viral evolution as a first-step approx-
imation to reality. After the infection to a host, the virus
might be suppressed by the immune system to a
sufficiently low level, but as the evolution progresses,
the viral strains would be replaced by different strains
that would cause increasingly smaller abundance of
uninfected cells, thus increasing higher total force of
infection. Such a gloomy picture of viral evolution might
be the mainstream path of the things occurring within a
patient of HIV.
But the mathematical result can also be used to

change the direction of viral evolution, as is demon-
strated by two examples of general cross-reactivity
studied by Iwasa et al. (2004). To do so, we need to
produce a vaccination of a novel strain that can cause
strong activation of the immune reaction, but not so
much to itself. After receiving such a strain, the total
force of infection by viruses would be reduced and the
number of uninfected cells would recover (see Iwasa
et al., 2004).
Finally, we may speculate the application of the

current analysis of viral evolution to cancer. Tumor-
igenesis is also the evolutionary process by accumulating
mutations within a host individual. The role of immune
system to suppress the cancer, and the escape of cancer
by mutation are aspects common to the virus evolution
studied in the present paper. However, cancer would
require a more careful treatment on the effect of spatial
pattern because those cells normally stick to each other
forming a clumped colony, which might make modeling
based on ordinary differential equations less accurate
than the virus dynamics.
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Appendix A.
Proof of Theorem 1. Let A be a group of strains with a
positive abundance in the equilibrium. Let x� and Y � be
the uninfected cell number and the total force of
infection at the equilibrium. Then from Eq. (15a):
fiðx

�;Y �Þ40 for all i 2 A: We also have

1 ¼
X
i2A

1

Y � bifiðx
�;Y �Þ; (A.1)

from Eq. (13). We consider strain k, which is not in A,
invades the equilibrium. From Eq. (16b), if fkðx

�;Y �Þ ¼

0; the invasion attempt fails. If instead

fkðx
�;Y �Þ40; (A.2)

strain k increases when rare. It can invade A (see, Eq.
(16a)). Then how does the abundance of uninfected cell
number change after such a successful invasion? We
denote B ¼ A [ kf g: Let xB and Y B be values in the new
equilibrium after the invasion. Note that some of the
strains in set B may go extinct in the new equilibrium. In
the new equilibrium, Eq. (13) becomes

1 ¼
X
i2A

1

Y B
bifiðx

B; Y BÞ þ
1

Y B
bkfkðx

B; Y BÞ: (A.3)

From Eq. (14), we have Y B ¼ l=xB � d: From
Eqs. (A.2) and (A.3), we have

14
X
i2A

1

Y B
bifiðx

B;Y BÞ: (A.4)

Now we can prove xBox�; implying that the equili-
brium number of uninfected cells should decrease after a
successful invasion. The proof is done by assuming the
opposite inequality xB

Xx� and deriving the contraction.
If xB

Xx�; we have Y BpY � from Eq. (14). From
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Conditions 1 and 2,

The right-hand

side of Eq: ðA:4Þ

" #
¼
X
i2A

1

Y B
bifiðx

B;Y BÞ

X

X
i2A

1

Y � bifiðx
�;Y �Þ ¼ 1; ðA:5Þ

where we used Eq. (A.1) for the last equality. Combing
this and Eq. (A.4), we reach 141, which is a contra-
diction. Hence we cannot assume xB

Xx�; and hence we
conclude xBox�:
From Eq. (14), Yx ¼ l� dx holds at equilibrium.

Hence the product of Y and x must increase when x

decreases after the invasion of k. &

Proof of Theorem 2. Let A be a group of strains with a
positive abundance in the equilibrium. Let x� and Y � be
the uninfected cell number and the total force of
infection at equilibrium. Then there are two situations:

Case 1: For all i in A, x�4ai=bi; and hence
fiðx

�;Y �Þ40:
Case 2: There is one strain j in A, at which x� ¼ aj=bj

holds. For all the other trains in A, x�4ai=bi and hence
fiðx

�;Y �Þ40:
For Case 1, we can apply the same argument the used

to prove Theorem 1 concerning the shift in the
equilibrium when an invader succeeds. Hence Theorem
1 holds, which implies Theorem 2 holds. In the following
we focus on Case 2.
We denote the set of all the strains in A except for j by

A0. Hence A ¼ A0 [ j
� �

:
We assume a similar setting as Theorem 1. Then

concerning the abundance of the ‘‘boundary strain’’ j,
we have

X
i2A

1

Y � bifiðx
�;Y �Þo1o

X
i2A

1

Y � bifiðx
�;Y �Þ

þ
1

Y � bjfjðx
� þ 0;Y �Þ: ðA:6Þ

Note that fjðx;Y
�Þ is discontinuous at x ¼ x�; and we

need to keep x� þ 0 symbol indicating the limit from
above. But for all the strains i in A0, fiðx;Y

�Þ is
continuous, which removes symbol for the limit from
below in (A.6).
If invader k satisfies ak=bk4x�; the invasion should

fail (see Eqs. (16)). Invasion would be successful when
ak=bkox� and hence fkðx

�;Y �Þ40:
After such a successful invasion, strain j may still

remain the system at a positive abundance, or strain j

may go extinct. This can be distinguished into the
following two cases:

Case 2a: If the following inequality holds,

X
i2A

1

Y � bifiðx
�;Y �Þ þ

1

Y � bkfkðx
�;Y �Þo1; (A.7)
strain j still remains in the system in the new equili-
brium keeping a reduced but positive abundance. Then
the number of uninfected cells remains x�; the same
value as before the invasion. The outcome of the
invasion is simply addition of strain k to the com-
munity. The abundances of different strains in the new
equilibrium are:

yi ¼ fiðx
�;Y �Þ40 for all i 2 A0; (A.8a)

yk ¼ fkðx
�;Y �Þ40; (A.8b)

yj ¼
1

bj

Y � �
X
i2A0

bifiðx
�;Y �Þ � bkfkðx

�;Y �Þ

 !
40:

(A.8c)

Case 2b: In contrast, if

X
i2A

1

Y � bifiðx
�;Y �Þ þ

1

Y � bkfkðx
�;Y �Þ41; (A.9)

strain j cannot be maintained after the invasion of strain
k. In this case, we can apply a similar logic as used in
deriving Theorem 1. Let B ¼ A0 [ kf g: We assume the
contrary to the inequality to prove. Suppose xB

Xx�:
From Eq. (14), this leads toY BpY �: Then, using
Conditions 1 and 3 we have

The left-hand side of Eq: ðA:8Þ½ � ¼
X
i2B

1

Y � bifiðx
�;Y �Þ

p
X
i2B

1

Y B
bifiðx

B;Y BÞ ¼ 1;

which combined with Eq. (A.9) leads us to 141, which
is a contradiction. Hence we conclude xBox�: From
Eq. (14), we have Y BxB4Y �x�: &
Appendix B

Here we show fi x;Yð Þ for the models discussed in this
paper. In all the models, Eq. (1a) is used for the
dynamics of uninfected cells, and Eq. (1b) is for the
dynamics of cells infected by strain i. They differ in
the dynamics of zi immune activity specific to strain i.

Model 1 (Eq. (1c)):

fiðx;Y Þ ¼
bibi

cipi

x �
ai

bi

� �
þ

ð1þ uY Þ: (B.1)

Model 2 (Eq. (5)), and Model 3 (Eq. (8)):

fiðx;Y Þ ¼
bi

ci

H x �
ai

bi

� �
ð1þ uY Þ: (B.2)
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Model 5 (Eq. (10)):

fiðx;Y Þ ¼
bi

ci

H x �
ai

bi

� �
1

1þ uY
: (B.3)

Model 4 (Eq. (9)):

fiðx;Y Þ ¼
bibi

cipi

x �
ai

bi

� �
þ

1

1þ uY
: (B.4)

Model 6 (Eq. (18)):

fiðx;Y Þ ¼
bi

cix
H x �

ai

bi

� �
: (B.5)

Model 7 (Eq. (19)):

fiðx;Y Þ ¼
bibi

cipix
x �

ai

bi

� �
þ

: (B.6)

For Models 1, 4, and 7, we can prove Theorem 1. In
contrast, for Models 2, 3, 5, and 6, together with the
convention of Eq. (17) at the point of discontinuity
(x ¼ ai=bi), we can prove Theorem 2.
Reference

Addo, M.M., Yu, X.G., Rathod, A., Cohen, D., Eldridge, R.L., Strick,

D., Johnston, M.N., Corcoran, C., Wurcel, A.G., Fitzpatrick,

C.A., Feeney, M.E., Rodriguez, W.R., Basgoz, N., Draenert, R.,

Stone, D.R., Brander, C., Goulder, P.J., Rosenberg, E.S., Altfeld,

M., Walker, B.D., 2003. Comprehensive epitope analysis of human

immunodeficiency virus type 1 (HIV-1)-specific T-cell responses

directed against the entire expressed HIV-1 genome demonstrate

broadly directed responses, but no correlation to viral load. J.

Virol. 77, 2081–2092.

Altes, H.K., Ribeiro, R.M., De Boer, R.J., 2003. The race between

initial T-helper expansion and virus growth upon HIV infection

influences polyclonality of the response and viral set-point. Proc.

R. Soc. London B 270, 1349–1358.

Bonhoeffer, S., Nowak, M.A., 1994. Can live attenuated virus work as

post-exposure treatment? Immunol. Today 16, 131–135.

Bonhoeffer, S., Holmes, E.G., Nowak, M.A., 1995. Causes of HIV

diversity. Nature 376, 125.

Bonhoeffer, S., May, R.M., Shaw, G.M., Nowak, M.A., 1997. Virus

dynamics and drug therapy. Proc. Natl Acad. Sci. USA 94,

6971–6976.

Borrow, P., Lewicki, H., Wei, X., Horwitz, M.S., Peffer, N., Meyers,

H., Nelson, J.A., Gairin, J.E., Hahn, B.H., Oldstone, M.B., Shaw,

G.M., 1997. Antiviral pressure exerted by HIV-specific cytotoxic T

lymphocytes (CTLs) during primary infection demonstrated by

rapid selection of CTL escape virus. Nat. Med. 3, 205–211.

De Boer, R.J., Boerlijst, M.C., 1994. Diversity and virulence thresh-

olds in AIDS. Proc. Natl Acad. Sci. USA 91, 544–548.

De Boer, R.J., Perelson, A.S., 1995. Towards a general function

describing T cell proliferation. J. Theor. Biol. 175, 567–576.

De Boer, R.J., Perelson, A.S., 1998. Target cell limited and immune

control models of HIV infection: a comparison. J. Theor. Biol. 190,

201–214.

Goulder, P.J., Brander, C., Tang, Y., Tremblay, C., Colbert, R.A.,

Addo, M.M., Rosenberg, E.S., Nguyen, T., Allen, R., Trocha, A.,

Altfeld, M., He, S., Bunce, M., Funkhouser, R., Pelton, S.I.,

Burchett, S.K., McIntosh, K., Korber, B.T., Walker, B.D., 2001.

Evolution and transmission of stable CTL escape mutations in HIV

infection. Nature 412, 334–338.
Ho, D.D., Neumann, A.U., Perelson, A.S., Chen, W., Leonard, J.M.,

Markowitz, M., 1995. Rapid turnover of plasma virions and CO4

lymphocytes in HIV-1 infection. Nature 373, 123–126.

Holmes, E.C., Zhang, L.Q., Simmonds, P., Ludlam, C.A., Leigh

Brown, A.J., 1992. Convergent and divergent sequence

evolution in the surface envelope glycoprotein of HIV-1 within

a single infected patient. Proc. Natl Acad. Sci. USA 89,

4835–4839.

Iwasa, Y., Michor, F., Nowak, M.A., 2004. Some basic properties of

immune selection. J. Theor. Biol. 229, 179–188.

Müller, V., Maree, A.F.M., De Boer, R.J., 2001. Small variations in

multiple parameters account for wide variations in HIV-1 set-

points: a novel modelling approach. Proc. R. Soc. London B 268,

235–242.

Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of

immune responses to persistent viruses. Science 272, 74–79.

Nowak, M.A., May, R., 2000. Virus Dynamics. Oxford University

Press, Oxford.

Nowak, M.A., May, R.M., Anderson, R.M., 1990. The evolutionary

dynamics of HIV-1 quasispecies and the development of immuno-

deficiency disease. AIDS 4, 1095–1103.

Nowak, M.A., Anderson, R.M., McLean, A.R., Wolfs, T.F.W.,

Goudsmit, J., May, R.M., 1991. Antigenic diversity thresholds and

the development of AIDS. Science 254, 963–969.

Nowak, M.A., May, R.M., Phillips, R.E., Rowland-Jones, S., Lalloo,

D.G., McAdams, S., Klenerman, P., Kope, B., Sigmund, K.,

Bangham, C.R.M., McMichael, A.J., 1995. Antigenic oscillations

and shifting immunodominance in HIV-1 infections. Nature 375,

606–611.

Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M.,

Ho, D.D., 1996. HIV-1 dynamics in vivo: virion clearance rate,

infected cell life-span, and viral generation time. Science 271,

1582–1586.

Phillips, R.E., Rowland-Johnes, S., Nixon, D.F., Gotch, F.M.,

Edwards, J.P., Ogunlesi, A.O., Elvin, J.G., Rothbard, J.A.,

Bangham, D.R.M., Rizza, C.R., McMichael, A.J., 1991. Human-

immunodeficiency-virus genetic-variation that can escape cytotoxic

T-cell recognition. Nature 354, 453–459.

Regoes, R.R., Wodarz, D., Nowak, M.A., 1998. Virus dynamics: the

effect of target cell limitation and immune responses on virus

evolutionxc. J. Theor. Biol. 191, 451–462.

Sasaki, A., 1994. Evolution of antigen drift/switching: continuously

evading pathogens. J. Theor. Biol. 168, 291–308.

Wahl, L.M., Bitter, B., Nowak, M.A., 2000. Immunological transi-

tions in response to antigenic mutation during viral infection. Int.

Immunol 12, 137–180.

Wei, X.P., Ghosh, S.K., Taylor, M.E., Johnson, V.A., Emini, E.A.,

Deutsch, P., Lifson, J.D., Bonhoeffer, S., Nowak, M.A.,

Hahn, B.H., Saag, M.S., Shaw, G.M., 1995. Viral dynamics in

human-immunodeficiency-virus type-1 infection. Nature 373,

117–122.

Wei, X., Decker, J.M., Wang, S., Hui, H., Kappes, J.C., Xiaoyun, W.,

Salazar, J.F., Salazar, M.G., Kilby, J.M., Saag, M.S., Komarova,

N.L., Nowak, M.A., Hahn, B.H., Kwong, P.D., Shaw, G.M., 2003.

Antibody neutralization and escape by HIV-1. Nature 422,

309–312.

Wodarz, D., Nowak, M.A., 2000. CD8 memory, immunodominance

and antigenic escape. Eur. J. Immunol. 30, 2704–2712.

Wodarz, D., Lloyd, A.L., Jansen, V.A.A., Nowak, M.A., 1999.

Dynamics of macrophage and T-cell infection by HIV. J. Theor.

Biol. 196, 101–113.

Wolinsky, S.M., Korber, B.T.M., Neumann, A.U., Daniels, M.,

Kunstman, K.J., Whetsell, A.J., Furtado, M.R., Cao, Y.Z., Ho,

D.D., Safrit, J.T., Koup, R.A., 1996. Adaptive evolution of human

immunodeficiency virus-type 1 during the natural course of

infection. Science 272, 537–542.


	Virus evolution within patients increases pathogenicity
	Introduction
	Model of immune impairment
	Model 1: cross-reactive immune impairment

	Alternative models of immune system interaction
	Model 2: same as model 1 but with a proportional activation term
	Model 3: impairment of immune cell activation
	Model 4: cross-reactive immune activation
	Model 5: cross-immunity with an alternative form

	Proof of directional evolution
	When equilibrium yi is a step function of x

	Target cells are helper T-cells
	Model 6
	Model 7
	Bistability

	Discussion
	Acknowledgments
	Appendix A.
	Reference


