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Abstract

We study game dynamical interactions between two strategies, A and B, and analyse whether the average fitness of the population

at equilibrium can be increased by adding mutation from A to B. Classifying all two by two games with payoff matrix ½ða; bÞ; ðc; dÞ�,
we show that mutation from A to B enhances the average fitness of the whole population (i) if both a and d are less than ðbþ cÞ=2
and (ii) if c is less than b. Furthermore, we study conditions for maximizing the productivity of strategy A, and we analyse the effect

of mutations in both directions. Depending on the biological system, a mutation in an evolutionary game can be interpreted as a

genetic alteration, a cellular differentiation, a change in gene expression, an accidental or deliberate modification in cultural

transmission, or a learning error. In a cultural context, our results indicate that the equilibrium payoff of the population can be

increased if players sometimes choose the strategy with lower payoff. In a genetic context, we have shown that for frequency-

dependent selection mutation can enhance the average fitness of the population at equilibrium.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Normally, mutation is thought to reduce the average
fitness of a population at equilibrium. A fraction of the
population consists of the fittest genotype (or pheno-
type), but mutations constantly introduce less-fit mu-
tants which lower the average fitness. This argument is
based on the assumption of constant selection. In this
paper, we will show that for frequency-dependent
selection, which is the defining property of evolutionary
game dynamics, mutation can increase the average
fitness of a population at equilibrium.
e front matter r 2005 Elsevier Ltd. All rights reserved.
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The question what is the optimum mutation rate for a
biological population has received much attention.
Haldane (1937) has estimated the ‘mutational load’ in
a population which is essentially the loss in productivity
due to mutation. Kimura (1967) has argued that the
optimum mutation rate is zero in a constant environ-
ment. The actual mutation rate will adapt to a minimum
level which represents a balance between the effect of
mutational load and the cost of further reducing the
mutation rate. In a changing environment, however, a
certain amount of mutations will be essential to stay at
the same level of adaptation; the Red Queen has to run
to remain in the same position. Other approaches for
studying the optimum mutation rate start with the
assumption that an organism is never perfectly adapted
and there is always a fitter solution within reach. In this
context, the question that needs to be solved is which
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mutation rate maximizes the probability of finding the
fitter solution (Taddei et al., 1997; Sniegowski et al.,
1997; Sasaki and Nowak, 2006).

In this paper, we will explore another approach of
asking about optimum mutation rates by studying the
effect of mutation in evolutionary games. Consider the
interaction between two strategies, A and B, in an
evolutionary game with payoff matrix

A

B

A B
a b

c d

� �
: (1)

The fitness of player A is given by f A ¼ axA þ bxB and
the fitness of player B is given by f B ¼ cxA þ dxB.
Denote by xA and xB the frequencies of players A and B
in an (infinitely large) population. Let xA þ xB ¼ 1. The
average fitness of the population is given by
F ¼ xAf A þ xBf B. Deterministic evolutionary dynamics
can be described by the replicator equation (Taylor and
Jonker, 1978; Hofbauer et al., 1979; Hofbauer and
Sigmund, 1989, 1998; Fudenberg and Harris, 1992;
Weibull, 1995; Fudenberg and Levine, 1998; Nowak and
Sigmund, 2004)

_xA ¼ ðf A � FÞxA,

_xB ¼ ðf B � FÞxB. ð2Þ

Note that _xA þ _xB ¼ 0. Thus the equation is one
dimensional; dynamics are defined on the interval
xA 2 ½0; 1�.

If aoc and dob, there is a globally stable equilibrium
in the interior given by x�A ¼ ðd � bÞ=ða� b� cþ dÞ. If
a4c and d4b the interior equilibrium, x�A, is un-
stable and two stable equilibria x�A ¼ 0 and 1 exist. In
this case both A and B are strict Nash equilibria (Nash,
1950, 1951) and evolutionary stable strategies (May-
nard-Smith and Price, 1973; Maynard-Smith, 1982). If
a4c and dob then strategy A dominates strategy B.
The globally stable equilibrium is given by x�A ¼ 1.
Strategy A is a strict Nash equilibrium. Conversely, if
aoc and d4b then strategy B dominates strategy A.
The globally stable equilibrium is given by x�B ¼ 1, and
strategy B is a strict Nash equilibrium. These are the
four generic cases for interaction between two strategies
A and B.

The replicator equation (with arbitrary fitness func-
tion) is a general description of frequency-dependent
selection dynamics (assuming asexual reproduction).
The replicator mutator equation (Hadeler, 1981; Stadler
and Schuster, 1992; Bomze and Burger, 1995; Nowak
et al., 2001, 2002) describes frequency-dependent selec-
tion and mutation and can be transformed into a Price
equation (Page and Nowak, 2002) and adaptive
dynamics (Nowak and Sigmund, 1990).
In this paper, we consider a replicator–mutator
equation of two strategies A and B. We will study if
mutation can increase the average fitness of the
population. Intuitively, if the off-diagonal entries in
the payoff matrix (1) are larger than the diagonal
entries, then it might be possible for mutation from A to
B or in both directions to increase the average fitness F
at equilibrium.

Symbiosis, for example, is a widespread phenomenon
in biology. In most cases it involves two organisms
feeding from two different resources resulting in a
mutual benefit. That is, individuals of type A increase
the fitness of individuals of type B and vice versa. The
fitness of both A and B is dependent on the composition
of the symbiotic community and, therefore, frequency
dependent. The replicator equation (2) can be used to
describe such systems. It is known that symbiosis is only
possible/stable if the cross-diagonal elements of the
payoff matrix are larger than the diagonal ones (aoc

and dob), that is, A benefits more from B than from A
and vice versa.

In this work we have a similar scenario in mind. The
major difference is that A is able to (accidentally or
deliberately) produce B at rate uA. That is, A produces
cells that are specialized on performing a certain task
that benefits A. Evolution has developed such systems at
several occasions. Especially in multicellular structures,
specialized cells are ubiquitous (e.g. cyanobacteria,
sponges, fungi).

From a biological point of view the most interesting
question is ‘‘when is such a cellular differentiation
beneficial either for A alone or the whole population of
A and B cells?’’ We will answer this question. The
framework we present here can be used to discuss
conditions that promote the evolution of cellular
differentiation.

Replicator dynamics can also be interpreted to
describe cultural (rather than genetic) transmission of
strategies (see Hofbauer and Sigmund, 1998). In this
context, strategy A is imitated or learned by other
individuals proportional to its payoff. Surprisingly, for
maximizing the average payoff of the population at
equilibrium it may be best to include occasional or
deliberate mistakes in this process of imitation or learning.

In general, we analyse the question of what is the
optimum mutation rate for maximizing the performance
of the whole population under frequency-dependent
selection.

In Section 2, we provide a complete classification of
all 2� 2 games that allow a mutation from A to B to
maximizes the fitness F ¼ xAf A þ xBf B at equilibrium.
In Section 3 we analyse mutations in both directions
(from A to B and from B to A). In Section 4, we study
mutations that maximize xAf A, the reproductive poten-
tial of A, at equilibrium. In Section 5 we summarize our
results.
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2. Mutation from A to B

Let x ¼ xA ¼ 1� xB. The average fitness of Eq. (2) is
given by

FðxÞ ¼ ðaþ d � b� cÞx2 þ ðbþ c� 2dÞxþ d. (3)

If aþ d � b� cX0, then FðxÞ is either linear or convex
and assumes its maximum values for x 2 ½0; 1� either at
x ¼ 0 or x ¼ 1. We have Fð0Þ ¼ d and Fð1Þ ¼ a. Let x̂

denote the frequency of A which maximizes FðxÞ. If
aod, then x̂ ¼ 0. If a4d, then x̂ ¼ 1.

If aþ d � b� co0, then FðxÞ has its maximum at
½ðbþ cÞ=2� d�=ðbþ c� a� dÞ. This value is in ð0; 1Þ if
and only if a; doðbþ cÞ=2. If this condition is not
satisfied, then x̂ ¼ 0 for aod and x̂ ¼ 1 for a4d, as
before. We summarize

x̂ ¼

bþ c

2
� d

bþ c� a� d
if maxða; dÞo

bþ c

2
;

0 if aod and maxða; dÞX
bþ c

2
;

1 if a4d and maxða; dÞX
bþ c

2
:

8>>>>>>>><
>>>>>>>>:

(4)

Note that x̂ maximizes the average fitness F, but is not
necessarily an equilibrium of Eq. (2).

Now we assume that A mutates into B with
probability uA. Instead of Eq. (2), we now have

_xA ¼ ð1� uAÞf AxA � FxA,

_xB ¼ uAf AxA þ f BxB � FxB. ð5Þ

The average fitness F and, therefore, the results
summarized in Eq. (4) remain unchanged. In system
(5), however, the inner equilibrium x� depends on the
actual payoff matrix as well as on uA. Obviously, if uA ¼

0 we get the replicator equation (2). If uA ¼ 1, then x ¼

0 is the only equilibrium. We note that if b4c and
x̂ 2 ð0; 1Þ, then a uA can be found for which we have
x� ¼ x̂, i.e. the equilibrium of the system maximizes the
average fitness. This mutation rate is given by

uA ¼
ððbþ cÞ=2� aÞððb� cÞ=2Þ

ððbþ cÞ=2� dÞaþ ððbþ cÞ=2� aÞb
(6)

and is always less than 1
2
.

In the following we will denote the optimum mutation
rate, which maximizes the equilibrium fitness, by ûA.
Table 1 shows ûA for the four different fitness landscapes
(columns) and the four possible equilibrium structures
of the replicator equation (rows). There are four
possible fitness landscapes: (i) FðxÞ has its maximum
in ð0; 1Þ; (ii) FðxÞ is monotonically decreasing; (iii) FðxÞ
is monotonically increasing; (iv) FðxÞ has its minimum
in ð0; 1Þ. There are four different equilibrium structures:
(i) B dominates A, (ii) A dominates B, (iii) A and B
coexist, and (iv) A and B are bistable. In the following
we will describe the results summarized in Table 1.
�
 B dominates A: Here x ¼ 0 is the only stable
equilibrium. Mutations from A to B have no effect.

�
 A dominates B: If x̂ 2 ð0; 1Þ then the optimum uA is
given by Eq. (6). If x̂ ¼ 0 then any uA is optimum that
exceeds 1� d=b. If x̂ ¼ 1 then uA ¼ 0 is optimum.

�
 A and B coexist: If x̂ 2 ð0; 1Þ and if b4c then the
optimum uA is given by Eq. (6). If x̂ 2 ð0; 1Þ and boc

then ûA ¼ 0. If x̂ ¼ 0 then any uA is optimum that
exceeds 1� d=b. If x̂ ¼ 1, then ûA ¼ 1.

�
 A and B are bistable: The bistable equilibrium
structure is incompatible with x̂ 2 ð0; 1Þ. For x̂ ¼ 1
the optimum mutation rate is ûA ¼ 0. For x̂ ¼ 0 any
uA is optimum that exceeds a critical value uc. This
critical value is given by the bifurcation point of the
two inner equilibria. If uA ¼ uc, only one inner
equilibria, xc, exists; it is a saddle point. We have

uc ¼
aða� bþ d � cÞ þ ad � bc� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða� bþ d � cÞðad � bcÞ

p
ðb� aÞ2

(7)

and

xc ¼
ða� bþ d � cÞb�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aða� bþ d � cÞðad � bcÞ

p
ða� bþ d � cÞðb� aÞ

.

(8)

If uA4uc, inner equilibria disappear and x ¼ 0 is
the only remaining equilibrium; it maximizes F.
Hence any uA4uc can be chosen as ûA.

Thus, we have derived a complete classification of
when cooperative mutation from A to B can increase the
average fitness F.
3. Mutation in both directions

Let us now analyse mutation in both directions. Let
uA and uB be the mutation rate of A and B. The
differential equations for this system are given by Eq.
(9).

_xA ¼ uBf BxB þ ðð1� uAÞf A � FÞxA,

_xB ¼ uAf AxA þ ðð1� uBÞf B � FÞxB. ð9Þ

Again, we have F ¼ xAf A þ xBf B and can use the
results from Eq. (4). In Appendix A, we show that if a
particular pair uA; uB40 is able to maximize the average
fitness, then a linear manifold of parameters exist that
maximize the fitness as well. In particular, a pair of
parameters exists with either xA ¼ 0 or xB ¼ 0, i.e.
cooperative mutations occur only in one direction,
either from A to B or from B to A.
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Table 1

Can mutation from A to B increase the average fitness of the population?

Here, we answer this question by indicating the optimum amount of cooperative mutation. Rows distinguish the possible equilibrium structures and

columns the fitness landscapes.
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Even though, the average fitness can equally well be
increased with mutations in only one direction, muta-
tions in both directions are especially interesting for
small but equal mutation rates, i.e. for u ¼ uA ¼ uB. In
this case, we can think of u as an error rate of
reproduction rather than of a deliberate mutation.
Table 2 shows when small error rates are able to
increase the average fitness.
�
 B dominates A: A small mutation rate, u, can increase
the average fitness if FðxÞ has a maximum in the open
interval ð0; 1Þ or FðxÞ is monotonically increasing on
ð0; 1Þ. If doðbþ cÞ=2, one of these two conditions
holds.

�
 A dominates B: A small mutation rate, u, can increase
the average fitness if FðxÞ has a maximum in ð0; 1Þ or
FðxÞ is monotonically decreasing on ð0; 1Þ. If
aoðbþ cÞ=2, one of these two conditions holds.

�
 A and B coexist: Let x� denote the inner equilibrium
for u ¼ 0 and x�u the inner equilibrium for u40. We
have F0ðx�Þ ¼ c� b. Therefore, FðxÞ at x ¼ x� is
increasing if boc and decreasing if b4c. For a small
mutation rate, we have x�uox� if and only if
aþ b4cþ d. Hence, a small mutation rate, u,
increases F if

ðiÞ boc and aþ bocþ d

or

ðiiÞ b4c and aþ b4cþ d.
�
 A and B are bistable: Since there are two stable
equilibria, we have to consider x0, the initial value of
xA. We will distinguish two cases, x0 ¼ 0 and 1. If
x0 ¼ 0, then a small mutation rate can increase F
only if FðxÞ is increasing on ð0; 1Þ. If x0 ¼ 1 then a
small mutation rate can increase F only if FðxÞ is
decreasing on ð0; 1Þ.

4. Maximizing the reproductive potential of A

In Sections 2 and 3, we studied the effect of mutations
on the average fitness of the whole population, i.e. A
and B. Naturally, the question of whether mutations can
be beneficial for just one of the players arises. Is, for
example, player A able to increase his reproductive
potential by (deliberately or undeliberately) mutating
into B?

To address this question we analysed Eq. (5) with
respect to A’s reproductive potential, FA ¼ xAf A (see
Appendix B). As we can see in Table 3, mutations from
A to B can indeed increase A’s reproductive potential. A
necessary condition for this is 2aob. Hence, only if B
contributes more than twice as much to A’s fitness than
A does, can mutations from A to B increase the
reproductive potential of A.

In Appendix B we also analyse whether FA can be
increased by replication errors, that is, low-frequency
mutations in both directions (see Table 4). We found an
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Table 2

Can replication errors increase the average fitness?

For every equilibrium structure (rows) and every fitness landscapes (columns) we indicate whether low-frequency replication errors u ¼ uA ¼ uB

increase the average fitness. For the bistable equilibrium structure (fourth row) the result depends on x0, the initial frequency of A.

Table 3

Is it possible for A to increase its reproductive potential FA ¼ xAf A by producing B?

We answer this question by providing the optimal mutation rate �uA. We write �uA ¼ 0 if mutations from A to B are not able to increase FA.
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increase of FA in surprisingly many cases. The trivial
cases are the ones with a dominating B or xB ¼ 1. But
even if A dominates or xA ¼ 1 is an increase of FA
possible. In particular, if 2aob and xA ¼ 1, FA can
always be increased by low-frequency mutations in both
directions.
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Table 4

Can low-frequency replication errors u ¼ uA ¼ uB increase A’s reproductive potential FA ¼ xAf A?

M. Willensdorfer, M.A. Nowak / Journal of Theoretical Biology 237 (2005) 355–362360
5. Discussion

In this paper, we have analysed a replicator–mutator
equation of two strategies A and B. The frequency of A
and B in the infinitely large population are given by xA

and xB with xA þ xB ¼ 1. The fitness of A and B is given
by axA þ bxB and cxA þ dxB, respectively.

We have answered the question of when a mutation
from A to B increases the average fitness F of the
population (see Table 1). We have also calculated the
condition for mutation from A to B to increase
FA ¼ xAf A, the reproductive potential of A (see Table
3). In both cases, the maximum value (of F or F A) is
achieved for a mutation from A to B, if the fitness of A
increases sufficiently as a function of the frequency of B,
that is, if the coefficient b in the payoff matrix is large
enough.

We have also studied the effect of low-frequency
mutations in both directions. Such mutations can be
interpreted as replication or transition errors during the
evolutionary process described by the replicator equa-
tion. Again, we have calculated the conditions for these
mutations to increase the equilibrium values of the
average fitness F of the population (Table 2), and the
reproductive potential of A, FA (Table 4). We showed
that such replication errors can increase F as well as FA

in many cases.
Normally, we think of mutation as something

detrimental in a non-changing environment. For con-
stant selection, the average fitness at equilibrium is a
declining function of the mutation rate. The purpose of
this paper is to point out that in the case of frequency-
dependent selection ð¼ evolutionary gamesÞ the effect of
mutation can be subtle. It is even possible that mutation
increases the equilibrium fitness of a population.
Appendix A. Mutations in both directions

The equilibria of Eq. (9) are given by the solutions of
a third-order polynomial. In particular by the solutions
of

½a� bþ d � c�x3 þ ð1� uAÞðb� aÞ þ uBðc� dÞ

�

þ 2
bþ c

2
� d

� ��
x2 � ½uBðc� 2dÞ

þ ð1� uAÞb� d�x� uBd ¼ 0. ð10Þ

We are interested in the relation between uA and uB for
x ¼ x̂, i.e. for equilibria that maximize F. We define

k ¼
ðb� aÞx̂2

� bx̂

ðc� dÞx̂2
� ðc� 2dÞx̂� d

,

h ¼
ð�aþ b� d þ cÞx̂3

þ ða� 2b� cþ 2dÞx̂2
þ ðb� dÞx̂

ðc� dÞx̂2
� ðc� 2dÞx̂� d

ð11Þ

and rewrite Eq. (10) for x ¼ x̂ as

uB ¼ kuA þ h. (12)

The linear relation between uA and uB becomes obvious.
To discuss the properties of the coefficients k and h we
will use the parameters

a ¼
bþ c

2
� a; b ¼

bþ c

2
,

d ¼
bþ c

2
� d; g ¼

b� c

2
ð13Þ

instead of a, b, c, and d. For these parameters we have
x̂ ¼ d=ðdþ aÞ and ûA from Eq. (6) becomes

ag
dðb� aÞ þ aðbþ gÞ

.
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Obviously, x̂ 2 ð0; 1Þ3a; d40 and ûA403g40. We
can write Eq. (11) as

k ¼
dðaðb� dÞ þ dbþ gaÞ
aðaðb� dÞ þ dðb� gÞÞ

,

h ¼
�dg

aðb� dÞ þ dðb� gÞ
. ð14Þ

Since b4a; d; g, we have k40 and h403go0. Hence,
if x̂ is a stable equilibrium for a system with uA; uB40, it
is also a stable equilibrium of a system where uA ¼ 0 (if
go0) or uB ¼ 0 (if g40).

From this we conclude that for every system in which
cooperative mutations in both directions are able to
maximize the average fitness, an system exist that
maximizes the average fitness equally well but requires
cooperative mutations only in one direction. In parti-
cular, cooperative mutations from A to B are sufficient
if cob, and mutations from B to A are sufficient if boc.
Appendix B. Maximizing the reproductive potential of A

Let FA ¼ xAf A denote the reproductive potential of
A. We want to study if FA can be increased by mutation
from A to B. As before, let xA ¼ x denote the frequency
of A and xB ¼ 1� x the frequency of B. We have

FAðxÞ ¼ ða� bÞx2 þ bx. (15)

There are two different fitness landscapes. If bo2a then
FAðxÞ increases monotonically on the interval ½0; 1�. If
b42a then F AðxÞ has a maximum at �x ¼ b=½2ðb� aÞ�.
Table 3 gives the mutation rates �uA that maximize FA.
Obviously, �uA ¼ 0 for a monotonically increasing F AðxÞ.
Therefore we will discuss Table 3 only for �x 2 ð0; 1Þ.
�
 B dominates A: Mutations from A to B cannot
influence the equilibrium structure; hence, uA is
unimportant.

�
 A dominates B: The optimum mutation rate is

�uA ¼
ð2a� bÞðbða� bþ d � cÞ � 2ðad � bcÞÞ

2bðb� aÞ2
. (16)
�
 A and B coexist: Let x� denote the inner equilibrium
for uA ¼ 0. Cooperative mutations can increase FA

only if �xox�, which is equivalent to
c� aoð1� d

b
Þðb� 2aÞ. In this case �uA is given by

Eq. (16). If c� aXð1� d
b
Þðb� 2aÞ, then �uA ¼ 0.
�
 A and B are bistable: Let x0 denote the initial value of
xA. Since mutations from A to B are without
consequence for x0 ¼ 0, we will only consider
x0 ¼ 1. We recollect the critical mutation rate uc

from Eq. (7) and the corresponding equilibrium xc

from Eq. (8). If xcox̂, then �uA is given by Eq. (16)
else �uA ¼ uc. We note that xcox̂ is equivalent to
b2
ða� bþ d � cÞo4aðad � bcÞ.
After a complete classification of when cooperative
mutations from A to B can increase the reproductive

potential of A, we will analyse when small replication
errors are able to do the same. The differential equations
are given by Eq. (9). Let u ¼ uA ¼ uB be the error rate.
Table 4 shows the results.
�
 B dominates A: A small mutation rate always
increases F A.

�
 A dominates B: FA can only be increased by a small
mutation rate if �xA 2 ð0; 1Þ, which means 2aob.

�
 A and B coexist: Let x� denote the inner equilibrium
for u ¼ 0 and x�u the inner equilibrium for u40. We
know that x�ox�u is equivalent to aþ bocþ d (see
Section 3). We have

F 0Aðx
�Þ403c� a4 1�

d

b

� �
ðb� 2aÞ.

Therefore, a small mutation rate increases FA if

ðiÞ aþ bocþ d and c� a4 1�
d

b

� �
ðb� 2aÞ

or

ðiiÞ aþ b4cþ d and c� ao 1�
d

b

� �
ðb� 2aÞ.
�
 A and B are bistable: If �x 2 ð0; 1Þ, replication errors
increase FA. If �x ¼ 1, errors are only able to increase
F A if x0, the initial value for xA, equals 0.
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