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Abstract

A traditional picture of evolutionary dynamics with constant fitness is that of genomes living in sequence space and adapting on

fitness landscapes. Mutation rates are considered to be constant or externally regulated. If, however, we take into account that

genomes also encode for enzymes that perform replication and error correction, then individual genomes not only have a specific

replication rate (fitness), but also a specific mutation rate. This leads to the concept of a mutation landscape. We explore evolution

on mutation landscapes. Localization in pure mutation landscapes is only possible under extremely restrictive conditions. Coupling

of mutation landscapes and fitness landscapes leads to localization and hence adaptation and evolution. We analyse how mutation

landscapes facilitate localization in fitness landscapes and vice versa. Finally, we show that for mutation landscapes, at equilibrium,

with constant environment, there is not necessarily selection for the minimum mutation rate. Instead, the target of selection is an

optimum distribution of mutation rates, a ‘mutational quasispecies’.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Evolution is the interplay of mutation and selection.
Mutation means that genomes are passed on from
parent to offspring with some changes. Selection means
that fitter individuals reproduce faster than others.
Fitness can be frequency dependent or not. Frequency
dependence emerges when the fitness of a phenotype
depends on the frequency of itself and other phenotypes
in the population. Here we study constant fitness.
Genomes are given by sequences, and each sequence
has a constant fitness value. Genomes are arranged in
sequence space and adapt on a fitness landscape.
Wright (1932) introduced fitness landscapes, while

Maynard Smith (1970) invented sequence space. Eigen
and Schuster (1977) combined these two ideas. In the
formalism of quasispecies theory, there is a replicating
population of RNA or DNA genomes. Let us consider
binary sequences of length n. There are 2n possible
sequences. Sequences replicate subject to mutation. Let
us only consider point mutations. Denote by u the

mutation rate per bit per round of replication. The
probability that replication of sequence i yields sequence
j is given by qij ¼ uhij ð1� uÞn�hij : The Hamming distance,
hij, denotes the number of point mutations between
sequences i and j. This distance defines the metric of
sequence space. All sequences are arranged in such a
way that nearest neighbors differ by a single point
mutation. This gives rise to a hyper-cube of dimension n.
Each sequence, i, has a certain reproduction rate,
ai, which defines its fitness. The fitness landscape is
a function from sequence space into positive real
numbers. Thus the fitness landscape is an n-dimensional
mountain range (Fig. 1).
Denote by xi the frequency of sequence i in an

infinitely large population. Deterministic evolutionary
dynamics can be written as

’xi ¼
X

j

ajxjqji � fxi: ð1Þ

This is the quasispecies equation. It describes constant
selection with mutation. The average fitness of the
population is given by f ¼

P
i aixi: Quasispecies dy-

namics have been studied in stochastic and deterministic
frameworks (Fontana and Schuster, 1987; Swetina and
Schuster, 1988; Eigen et al., 1989; Nowak and Schuster
1989).
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The quasispecies adapts on the fitness landscape. It
will move from regions of lower fitness to regions of
higher fitness. It will climb up mountain slopes and
edges to reach local peaks. There will be transitions from
lower peaks to higher peaks. For deterministic dy-
namics, there is only one globally stable equilibrium,
which is given by the eigenvector associated with the
largest eigenvalue of the linear operator wij=aiqij. The
largest eigenvalue corresponds to the highest average
fitness, f, at equilibrium.
A crucial phenomenon of quasispecies dynamics is the

error threshold. For many reasonable fitness landscapes
the mutation rate, u, has to be less than 1/n, for the
equilibrium quasispecies distribution to be localized in a
particular region of sequence space. Localization is
required for the ability of the quasispecies to adapt to
peaks in the fitness landscape. Localization and adapta-
tion are required for evolution. In contrast, if u>1/n,
then for most fitness landscapes, the quasispecies will
be delocalized, which means that all sequences will be
roughly equally frequent. In this case, any finite
population will wander endlessly in sequence space.
The new idea that we introduce in the present paper is

that individual genomes are not only associated with a
specific fitness value, but also with a specific mutation
rate. We imagine that large parts of the genome encode
for enzymes involved in DNA replication or error
correction. For example, more than 30 genes encode for
DNA replication and error correction in the T4 phage
whose total genome contains 300 genes. In the
eukaryotic genome, hundreds or thousands of genes

contribute to an overall low mutation rate: these are
genes that participate in DNA replication, synthesis of
materials for DNA replication, error correction, recom-
bination mechanisms, cell cycle check points, chromo-
some segregation, etc. We want to understand the
selection pressure that ensures the evolution and
adaptation of genes that affect mutation rates. The
particular base sequences of such genes determine the
overall mutation rate. In a quasispecies framework,
sequence j is associated with a specific mutation rate uj.
This gives rise to the concept of a mutation landscape
(Fig. 1). Evolution is now described by adaptation of the
quasispecies on both mutation and fitness landscapes.
We want to study the conditions for adaptation (that is
localization) of quasispecies on mutation landscapes and
on combined mutation and fitness landscapes.
Mutation landscapes provide a general framework for

studying the evolution of mutation rates. There is a large
and interesting literature on this topic. Kimura (1967)
suggested that mutation rates of natural populations are
determined by a balance between (i) selection against
deleterious mutants favoring lower mutation rates and
(ii) costs incurred by any further reduction in the
mutation rate. Such costs can include energetic and
kinetic considerations of DNA replication, proof-
reading and repair. This idea was further analysed by
Kondrashov (1995) and Dawson (1999). In the absence
of any costs associated with reduced mutation rates,
Fisher (1918, 1930) and Leigh (1970, 1973) argued that
in an asexual population the optimum mutation rate can
be positive given there is a possibility of producing
advantageous mutants (see also Sniegowski et al., 1997;
Taddei et al., 1997). In this context, the mutation rate is
determined by selection against deleterious mutants and
selection of beneficial mutants. Most of the mathema-
tical models on the evolution of mutation rates include
modifier alleles that affect the mutation rate of a genome
without directly affecting its fitness (Karlin and
McGregor, 1974; Gillespie, 1981; Liberman and Feldman,
1986; Ishii et al., 1989; Haraguchi and Sasaki, 1996).
The term ‘mutation landscape’ was first used by

Gillespie (1984, 1991), but with a different meaning.
Gillespie pictured a population being stuck on a local
optimum of a fitness landscape unable to reach the
global optimum, because the mutation rate being too
low. He referred to this phenomenon as ‘mutation
landscape’. This idea is very different from ours.
There is a fascinating and growing literature dealing

with evolutionary dynamics on fitness landscapes
(Weinberger, 1990; Holland, 1992; Kauffman 1993;
Hordijk, 1996; Stadler, 1996; Fontana and Schuster
1998; Stadler and Wagner, 1998; Newman and
Engelhardt, 1998; van Nimwegen et al., 1999; Naudts
and Kallel, 2000; Krakauer and Plotkin, 2002; Smith
et al., 2002). One aim of this paper is to induce similar
investigations into mutation landscapes.
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Fig. 1. In sequence space, sequences are arranged such that immediate

neighbors differ by a single point mutation. All sequences have the

same length, n. The resulting sequence space has n dimensions. For

binary sequences, each dimension has two possibilities: 0 or 1. Fitness

landscape is a function that assigns each sequence a specific fitness

value (a reproductive rate), which is usually a positive real number.

Genomes of organisms, however, encode for proteins that determine

both reproductive and mutation rates. Hence it makes sense to

consider the concept of a mutation landscape, which assigns each

sequence a specific mutation rate. The figure shows sequence space for

n=3 and the illustration of a mutation and a fitness landscape over a

projection of sequence space.
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2. Mutation landscapes

Consider a quasispecies of binary sequences with
length n. Let x0 be the frequency of the sequence with
lowest mutation rate. We refer to this sequence also as
the highest fidelity sequence. Let xi denote the frequen-
cies of sequences that are i point mutations away from
the highest fidelity sequence. All sequences have the
same fitness, and we ask what is the condition for the
maintenance of the highest fidelity sequence.
Suppose that the mutation rate ui of the sequences are

an increasing function of the Hamming distance, i, from
the highest fidelity sequence: u0ou1oyoun. Evolu-
tionary dynamics are given by

’x0 ¼ �nu0x0 þ u1x1;

’xi ¼ ðn � i þ 1Þui�1xi�1 � nuixi þ ði þ 1Þuiþ1xiþ1;

i ¼ 1;y; n � 1; ð2Þ

’xn ¼ un�1xn�1 � nunxn:

At equilibrium, we have the detailed balance condition
(n�i+1)ui�1 #xi�1=iui #xi This yields

#xi ¼
n

i

 !
1

ui

Xn

j¼0

n

j

 !
1

uj

; i ¼ 0; 1;y; n:

,
ð3Þ

Let us now consider two specific examples of simple
mutation landscapes.

2.1. Symmetric mutation landscapes

If the mutation rate of sequences increase with the
distance from the highest fidelity sequence as ui=u0a

i

with a>1, then the stationary distribution is binomial

#xi ¼
n

i

 !
1

aþ 1

� �i

1�
1

aþ 1

� �n�i

: ð4Þ

The frequency of the highest fidelity sequence is #x0 ¼
ð1þ 1=aÞ�n: For ab1, we have #x0Ee�n/a. In this case,
the population is localized at the highest fidelity
sequence only if noa. As the genome length, n,
increases, this condition implies a very steep mutation
landscape.

2.2. Single-valley mutation landscapes

Let us now analyse the case where one sequence has a
lower mutation rate than all other sequences, and all
other sequences have the same mutation rate. The
mutation rates are given by u0ou1 ¼ u2 ¼ ? ¼ un: At
equilibrium, we obtain

’x0 ¼
u1

u0
2n þ

u1

u0
� 1

� �� 	
;



ð5Þ

’x0 ¼
n

i

 !,
2n þ

u1

u0
� 1

� �� 	
; i ¼ 1; 2;y; n: ð6Þ

For the localization at the high fidelity sequence, the
mutation rate u0 of the high fidelity sequence must be of
the order of 2�n. Again this condition is extremely
restrictive for reasonable long genome length, n.
In comparison the condition for localization under a
single-peak fitness landscape is about u0o1/n, which is
the standard error threshold.
In general, if we ignore back mutation to the highest

fidelity sequence, then the first equation of system (2) is
replaced by ’x0 ¼ �nu0x0: Thus, the highest fidelity
sequence is never maintained without back mutation. In
contrast, for single peak fitness landscapes, the error
threshold specifies also the condition for maintaining the
fittest sequence in the absence of back mutation.

3. Coupling mutation and fitness landscapes

3.1. A single fitness peak and a single mutation valley

Suppose that the whole genome of an organism
consists of n positions that determine mutation rate and
of m positions that determine fitness. We could also
include k positions that determine both fitness and
mutation rate, but this does not change our analysis. We
assume a single-peak mutation landscape: only one
particular sequence of length n ensures the low mutation
rate, u0, while all other sequences have mutation rate u1
with u0ou1. We also assume a single-peak fitness
landscape for the fitness-defining part of the genome
of length m. Only one sequence of length m (the wild
type) ensures a higher fitness a0>1 than the rest of
sequences, which have fitness a1=1. We define the
Malthusian parameter of the wild type as s0=log a0>0.
The Malthusian parameter of the other sequences
is 0. There are 2� 2 classes of sequences: a single
high-fidelity high-fitness sequence, m high-fidelity low-
fitness sequences, n low-fidelity high-fitness sequences,
and 2n+m�n�m+1 low-fidelity low-fitness sequences.
We denote the frequencies of these classes by x00, x01,
x10, and x11, respectively.
Neglecting the back mutations to high-fidelity or

high-fitness sequences, the evolutionary dynamics are
given by

’x00 ¼ �ðn þ mÞu0x00 þ ðs0 � %sÞx00; ð7aÞ

’x01 ¼ mu0x00 � nu0x01 � %sx01; ð7bÞ

’x10 ¼ nu0x00 � mu1x10 þ ðs0 � %sÞx10; ð7cÞ

’x11 ¼ nu0x01 þ mu1x10 � %sx11: ð7dÞ
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The population average Malthusian fitness is given by

%s ¼ s0ðx00 þ x10Þ: This is a quasispecies equation with
separate mutation and selection terms. There are three
equilibria:
(i) High-fidelity high-fitness equilibrium. In this case,

the equilibrium frequency of the sequence with high
fidelity and high fitness, #x00, is positive. The equilibrium
frequencies are given by

#x00 ¼ 1�
ðn þ mÞu0

s0

� �
1�

nu0

mðu1 � u0Þ

� �
; ð8aÞ

#x01 ¼
mu0=s0

1� mu0=s0
1�

ðn þ mÞu0
s0

� �
1�

nu0

mðu1 � u0Þ

� �
;

ð8bÞ

#x10 ¼ 1�
ðn þ mÞu0

s0

� �
nu0

mðu1 � u0Þ
; ð8cÞ

#x11 ¼ 1� #x00 � #x01 � #x10: ð8dÞ

This equilibrium exists and is stable if

u0ðn þ mÞos0; u0ðn þ mÞou1m: ð9Þ

The first condition states that the mutation rate per
genome has to be less than the Malthusian fitness. This
is the classical error threshold. The second condition
states that the mutation rate per genome has to be
reduced by adding genes that reduce the mutation rate:
for the high-fidelity, high-fitness organism, the mutation
rate per genome is given by u0(n+m); this quantity has
to be lower than u1m which is the mutation rate per
genome for the low-fidelity, high-fitness organism.
The two conditions can also be written as a limit on

the total genome length, n+mo(1/u0) min{s0, mu1}.
Maintenance of low mutation rate and high fitness is
favored if n and u0 are as small as possible and if s0 is
as large as possible. Interestingly, for the number of
selective positions, m, we obtain both an upper and a
lower bound:

nu0

u1 � u0
omo

s0

u0
� n: ð10Þ

If m is too small there is not enough selection for low
mutation rate, if m is too large then the sequence with
high fitness cannot be maintained, because the popula-
tion is beyond the error threshold.
(ii) Low-fidelity, high-fitness equilibrium. Here we have

#x00 ¼ #x01 ¼ 0 but #x10 > 0 and #x11 > 0: From the right-
hand side of (7c), we see that %s ¼ s0 � mu1 must be
satisfied at equilibrium with #x10 > 0; and then #x01 ¼
1� ðmu1=s0Þ and #x11 ¼ mu1=s0: This equilibrium exists
and is stable if u1mos0 and u1m ou0(n+m).
(iii) Low-fidelity, low fitness equilibrium. In this case,

we have #x00 ¼ #x01 ¼ #x00 ¼ #x10 ¼ 0 and #x11 ¼ 1: This
equilibrium exists and is stable if u0=s0>1/(n+m) and
u1/s0>1/m.
The phase diagram is illustrated in Fig. 2.

3.2. A single fitness peak and a complex

mutation landscape

Let us now consider a general mutation landscape
that is linked to a single-peak fitness landscape. As
before, we assume there are n positions that determine
the mutation rate. We label the binary sequences of
length n as i=1,y,2n. The mutation probability from
sequence i to sequence j is given by

qij ¼ u
hij

j ð1� ujÞ
n�hij : ð11Þ

As before, we assume there are m positions that
determine the fitness. The fitness landscape has a single
peak. Hence, there is one particular sequence of length
m that has fitness, a>1, while all other sequences have
fitness 1. Denote by xi the frequency of the genome with
a high fitness sequence and with sequence i in the
mutational part. Denote by yi the frequency of genomes
with any low fitness sequence and with sequence i in the
mutational part. Evolutionary dynamics are given by

’xi ¼
X

j

axjqjið1� ujÞ
m � fxi; ð12Þ

’xi ¼
X

j

axjqji½1� ð1� ujÞ
m� þ

X
j

yjqji � fyi: ð13Þ

The average fitness of the population is f ¼P
jðaxj þ yjÞ:
Fig. 3 shows a computer simulation. The mutation

rates, ui, are uniformly distributed between 0.02 and 0.5.
The number of positions that affect the mutation rate is
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Fig. 2. Coupling of mutation and fitness landscapes can lead to

selection of high fitness and high fidelity (that is low mutation rate).

Suppose n positions of a binary sequence have to be maintained to

ensure a low mutation rate, u0. Any change in these n positions

increases the mutation rate to u1. Suppose m different positions have to

be maintained to ensure a high Malthusian fitness value, s0. Any

change in these m positions reduces the Malthusian fitness to 0.

Quasispecies dynamics are given by system (7). There is always a single

stable equilibrium. Depending on conditions outlined in the text and

illustrated in the figure, this equilibrium will contain the high-fidelity/

high-fitness sequence, the low-fidelity/high-fitness sequences or only

the low-fidelity/low-fitness sequences.
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n=5. Hence there are 25=32 different mutation
sequences. The number of selective positions varies
from m=1�100. The fitness peak is a = 10. There is a
minimum and a maximum number m that is compatible
with selection for low mutation rates. We can use the
calculation of Section 3.1 to estimate these boundaries.
The Malthusian fitness is given by s0 = log a. The lowest
mutation rate in our random sample was u0=0.02493.
The average mutation rate is u1E0.25. From Eq. (9), we

obtain 0.5omo87, which is in perfect agreement with
the simulation.

3.3. Selection of ‘mutational quasispecies’

Let us now couple a single-peak fitness landscape with
a mutation landscape that has two valleys. Valley A is
deep and narrow, valley B is less deep but broader. In a
constant environment, the expectation is that mutation
rates are as low as possible. Thus there should always be
selection for A over B. Here we show that this is not the
case. Whether A or B wins, depends on the fitness
landscape.
Fig. 4 shows a computer simulation. As before, the

number of positions that affect the mutation rate is
n=5. The sequence 00000 has mutation rate 0.019. The
sequence 11111 has mutation rate 0.0195. The 5 one-
error mutants of the sequence 11111 have mutation rates
0.02, 0.0205, 0.021, 0.0215, 0.022. All other sequences
have mutation rate 0.5. The fitness peak is a=10. For m

less than about 42, the dominant sequence is 11111.
Hence, in this case there is no selection for the lowest
mutation rate. As m exceeds 42 there is a sharp
transition and suddenly the dominant sequence is
00000. From Eq. (9), we can calculate that sequences
with high fidelity and high fitness will dissappear at the
critical value m=[log(10)/0.019]�5=116. This is exactly
the case.
In this example, for mo42, we have the interesting

result that for a constant environment at equilibrium
there is no selection for minimum mutation rate. This is
contrary to a current dogma of evolutionary biology.
The target of selection is not the sequence with
minimum mutation rate, but the optimum distribution
of mutation rates, the ‘mutational quasispecies’ that
maximizes fitness at equilibrium.
A similar concept has been described for fitness

landscapes (Swetina and Schuster, 1988). Imagine a
fitness landscape with two peaks. Peak A contains a
single sequence with fitness a0. Peak B contains several
sequences with fitness a1oa0. All other sequences have
fitness 1. All sequences have the same mutation rate.
There are two critical mutation rates, u1ou2. If uou1,
the quasispecies at equilibrium will be centered around
peak A. If u1ouou2, however, the quasispecies is
centered around peak B. In this case, the sequence with
highest fitness, a0, is not present in the population.
Hence, there is no ‘survival of the fittest’. Instead there
is survival of the quasispecies (with highest average
fitness, f).

4. Adding genes to reduce mutation

We can use the model of Section 3.1 to study the
conditions for adding a gene that would reduce the
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Fig. 3. Localization and error threshold in a mutation landscape. In

this example we couple a single-peak fitness landscape with a complex

mutation landscape. The fitness landscape is defined on a sequence

space of m positions. This number varies from m = 1 to 100 and is

presented on the x-axis. The all-0 sequence has fitness a=10, while all

other sequences have fitness 1. The mutation rate is determined by 5

other positions. Therefore, we have 25=32 different mutation

sequences, whose mutation rates are uniformly distributed between

0.02 and 0.5. The variables xi and yi denote, respectively, the relative

abundances of these 32 sequences in conjunction with high and low

fitness. As predicted, we observe a minimum and a maximum number

m that is compatible with selection for low mutation rates. The lowest

mutation rate in our random sample was u0=0.02493, while the

average mutation rate is u1E0.25. Using Eq. (10), we find the

0.5omo87 is required for localization in the mutation landscape.

This result is in perfect agreement with the numerical simulation. For

mo 87, the population is centered around a high-fitness sequence with

a low mutation rate. For m>87, the high-fitness sequences disappear;

there is a fairly that distribution of sequences with low fitness and

different mutation rates.
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mutation rate. Consider a genome of length m with
mutation rate u1 and Malthusian fitness s0. Evolutionary
stability in terms of the error threshold requires that
s0>mu1. Let us now add a gene of length n that reduces
the mutation rate to u0. Thus u0ou1. From Eq. (9), we
find that this gene can be maintained in the population
provided

m

m þ n
u1 � u0 > 0: ð14Þ

If n5m then we simply need u1–u0>0. Hence, any
gene that reduces the mutation rate can be added to a
large genome.
A gene that reduces the mutation rate, however,

should not come for free. There could be a constant
cost, c, that reduces the Malthusian fitness to s0–c.
Furthermore, there could be a cost proportional to the
total genome size, thereby further reducing the Mal-
thusian fitness to s0 � c � gðn þ mÞ: In this case, the gene
can be maintained in the population if

m

m þ n
u1 � u0 > gþ

c

m þ n
: ð15Þ

Again if n5m then u1–u0>+g+c/m. Therefore the
difference in the mutation rates has to exceed the costs.
These are fairly traditional considerations linking the
new concept of mutation landscapes to the existing
literature on the evolution of mutation rates.

5. Discussion

Genomes encode for proteins that determine both
reproductive rates (fitness) and mutation rates. Hence,
evolution is adaptation on both fitness landscapes and
mutation landscapes. We have studied some basic
properties of mutation landscapes. If the fitness land-
scape is completely that, there is no localization in a
mutation landscape (other than in extremely restrictive
circumstances). The interaction between fitness and
mutation landscapes leads to localization in mutation
landscapes. We have derived analytic results for condi-
tions of localization (error thresholds) on simple fitness
and mutation landscapes.
Suppose m positions in a genome contribute to an

increased Darwinian fitness, a0, relative to a fitness of 1
if at least one of these positions is mutated. The
Malthusian fitness is given by s0=log a0. If the mutation
rate per base is u1, then the error threshold is given by
u1mos0. This means, the mutation rate per genome has
to be less than the Malthusian fitness. Since fitness
advantages cannot be arbitrarily large, this condition
provides a limit for the maximum genome size for a
given mutation rate. Let us now add n positions to the
genome that reduce the overall mutation rate from u1 to
u0. The evolutionary stability of the new genome of
length n+m requires two conditions to hold:

(i) u0(n+m)os0;
(ii) u0(n+m)ou1m

As before the total mutation rate per genome has to
be less than the Malthusian fitness. This is the error
threshold for a genome of length n+m and mutation
rate u0. In addition, the total mutation rate per genome,
u0(n+m), has to be less than the total mutation rate per
genome, u1m, for the genome of size m and mutation
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Fig. 4. In a constant environment, at equilibrium, there is selection for

a mutational quasispecies rather than selection for minimum mutation

rate. In this example, n=5 positions affect the mutation rate. The

sequence 00000 has mutation rate 0.019, while the sequence 11111 has

the slightly higher mutation rate 0.0195. The 5 one-error mutants of

the sequence 11111 have mutation rates 0.02, 0.0205, 0.021, 0.0215,

0.022. All other sequences have mutation rate 0.5. These values define

a mutation landscape with two valleys. The valley around 00000 is

deep and narrow, whereas the valley around 11111 is slightly less deep

but broader. For the fitness landscape we assume a single peak of

fitness a=10; all other sequences have fitness 1. There are m positions

that determine the fitness landscape. For m less than about 42, the

dominant sequence in the mutation landscape is 11111. Hence, in this

case there is no selection for the lowest mutation rate. As m exceeds 42

there is a sharp transition and suddenly the dominant sequence is

00000. From Eq. (10), we can calculate that sequences with high

fidelity and high fitness will dissappear at the critical value

m=[log(10)/0:019]�5=116. This is confirmed by our numerical

analysis.

A. Sasaki, M.A. Nowak / Journal of Theoretical Biology 224 (2003) 241–247246



rate of u1. This two conditions have to be fulfilled for the
evolution of complex life.
Furthermore, if a mutation landscape has two valleys,

one deep and narrow, the other one shallower but
broader, there is not necessarily selection for lowest
possible mutation rate. Hence, in a constant environ-
ment, natural selection does not necessarily favor the
genome with the lowest possible mutation rate. Instead
the target of selection is a ‘mutational quasispecies’.
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