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Abstract. We consider two-state automata playing repeatedly the Prisoner’s
Dilemma (or any other 2 x 2-game). The 16 x 16-payoff matrix is computed for
the limiting case of a vanishingly small noise term affecting the interaction.
Some results concerning the evolution of populations of automata under the
action of selection are obtained. The special role of ‘win-stay, lose-shift’-
strategies is examined.

1 Introduction

It is almost in the nature of a game that it can be repeated a number of times,
and a growing part of game theory deals with such iterated encounters. The
best-known example is probably the Prisoner’s Dilemma, but there are many
other iterated games in biology, psychology and economics.

In the Prisoner’s Dilemma, two players have the options to cooperate (C)
or to defect (D). If both players cooperate, both obtain 3 points, say; if both
defect, both receive 1 point; if one player defects and the other cooperates, the
defector receives 5 points and the cooperator 0. Clearly strategy D is best, no
matter what the other player does; it dominates the cooperative option. Hence
both players will use D and end up with one point only, instead of three points
for mutual cooperation.

This picture greatly changes if the game is repeated with a high probabil-
ity. There is no longer, in this case, a dominant strategy which yields the best
reply against any possible strategy of the co-player, because the short-term
advantage obtained by playing D in one round can make one lose the
prospect of a future mutual cooperation. This ‘shadow of the future’ plays
a central role in Axelrod’s investigations of the Prisoner’s Dilemma and in
many applications to theoretical biology and the evolution of cooperation (see
Axelrod 1984, Axelrod and Hamilton 1981 and Axelrod and Dion 1988). In
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particular, it shows that the possibility of further rounds can totally alter the
character of a game.

The number of possible strategies for an iterated game grows exponenti-
ally with the number of rounds in the game. This makes it almost imperative
to restrict the strategy space drastically. One such approach is to consider
only strategies defined by finite state automata. We shall follow this approach,
but assume, furthermore, that the automata are to some small degree error-
prone. Our main motivation is biological. In evolutionary game theory, we
have to deal with populations of players following very simple rules (certainly
a far cry from fully rational agents) and subject to mistakes in perceiving the
action (or identity) of the co-player and in implementing their own behav-
ioural program. We shall only consider very simple interactions, like the
Prisoner’s Dilemma or Chicken (the Hawk-Dove game of animal behayv-
iourists), but emphasize that our approach is valid in a far more extended
context.

Specifically, we consider games with finitely many strategies which are
repeated infinitely often. Even the least likely error is bound to occur some-
times. The finite-state automata representing the strategies of the iterated
game will always assume all their possible states. In Sect. 2, we shall use
probabilistic arguments to derive the payoff matrix for such games if they are
affected by errors in implementation. In Sect. 3, we shall deal with game-
dynamical aspects: the results, here, are far from complete, due to the high
dimension of the problem and the large number of possible cases. In Sect. 4,
we deal more systematically with the family of ‘win-stay, lose-shift’-strategies,
and in Sect. 5, we briefly consider the effect of errors in perception.

This paper is a complement of Nowak and Sigmund (1993a, b). In Nowak
and Sigmund (1993a), we have emphasised the dynamical richness of the
infinitely iterated Prisoner’s Dilemma. If one assumes that strategies are
transmitted in the population from one generation to the next in proportion
to their success (i.e. to their average payoff in the population), and if this
transmission is again error-prone (i.e. subject to a small mutation rate), then
one finds a wealth of interesting dynamics including limit cycles and chaotic
attractors. This occurs if one considers, for instance, populations composed of
all conceivable deterministic two-state automata. The wide-spread instability
seems to be essentially caused by the prevalence of heteroclinic ‘stone-scissors-
paper’-cycles on the boundary of the state space. Indeed, we can show that
there are no equilibria with all types of automata present: selection drives the
population towards the boundary of the state space.

In Nowak and Sigmund (1993b), we have performed extensive evolution-
ary simulations involving stochastic two-state automata (programmed to play
one or the other alternative with well-defined probabilities, depending on the
outcome of the previous round). In this case, we allowed mutations to create
new strategies from time to time. The evolutionary chronicles displayed
punctuated equilibria: the population was usually either always cooperating
or always defecting. There was a distinct trend towards cooperation, and
within cooperative populations towards the adoption of ‘Paviov’, the only
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‘win-stay, lose-shift’-strategy which yields cooperation when adopted by the
whole population. In particular, tit for tat was outperformed by Pavlov. This
result motivates the study of the biologically eminently plausible class of ‘win-
shift, lose-stay’ strategies in the last part of our paper.

2 The payoff matrix

We consider a simple 2 x 2-game with two pure strategies C and D and payoff

matrix
R §
(7 3) (1)

The letters indicate that we have primarily in mind the Prisoner’s Dilemma:
C stands for Cooperate, D for Defect, R for Reward, S for the Sucker’s payoff,
T for Temptation and P for Punishment. But we emphasize that the following-
also applies to all other 2 x 2-games.

We consider now the iterated game which consists in repeating the simple
2 x 2-game infinitely often, i.e. with probability 1. It admits a continuum of
possible strategies. Following Rubinstein (1986), Abreu and Rubinstein (1988),
Miller (1989), Banks and Sundaram (1990), Lindgren (1991), Binmore and
Samuelson (1992) and Probst (1993), we restrict our attention to strategies
which are given by finite state automata: more precisely, by two-state auto-
mata only. Each of the two players is now an automaton which can be, in any
given round of the iterated game, in one of two states. These states correspond
to the two possible moves C and D. The state of the player in the following
round depends on the present state and on the other player’s move. For
instance, an automaton playing tit for tat always assumes the state corres-
ponding to the opponent’s previous move.

Hence each such automaton is specified by a graph with two nodes C and
D (the states of the automaton) and two oriented edges issuing from each
node, one labelled C and the other D, which specify the transition from the
current state to the state in the next round as a reaction to the other player’s
C resp. D. A further arrow points to whichever of the two states is the initial
state. (For instance, this is C for Tit For Tat and D for Suspicious Tit For Tat).
Fig. 1 displays a few examples. There are 2* possibilities for the transition
arrows, and two possible initial conditions, making altogether for 32 graphs.
But some of these graphs describe automata with the same behaviour. For
example, if an automaton with initial state C has the two edges issued from
Cdoubling back to C, then it will always remain in the C mode and hence play
AllC, no matter where the two edges issued from D are leading to. The state
will never reach D. Thus there are only 26 different strategies implemented by
such automata.

Each round leads one of the four possible outcomes (C, C), (C, D), (D, C) or
(D, D), where the first position denotes the option chosen by the player and the
second that of the co-player. From the player’s point of view, these outcomes
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Fig. 1. Some automata: a tit for tat; b suspicious tit for tat; ¢ Paviov; d Gr!m;
e Tweedledee (in the terminology of Binmore and Samuelson, 1992). The corresponding
transition rules are Sy, (for a2 and b), S, for Pavlov, S for Grim and Sy, for Tweedledee

are specified by his payoff R, S, T or P, which can be numbered by i = 1,2,3,4.
The 16 possible transition rules can be labelled by quadruples (i, , u;, u3, us) Of
zeros and ones. Here, u; is 1 if the automaton plays C and 0 if it plays D after
outcome i (i = 1,2,3,4). For instance, (1,0, 1,0) is the transition rule for a tit
for tat-player, (0,0,0,0) that for AlID, (1,0,0,1) that for Pavlov, etc. . . For
convenience, we label these rules by S;, where j ranges from 0 to 15 and is the
integer given, in binary notation, by u,u,u;us. Thus Sy is AIlID, S, is Pavlov
and S, 1s tit for tat.

How one rule fares against another depends, of course, on the initial
condition. Let us consider, for instance, an automaton with rule
Ss =(1,0,0,0) (a retaliator who never relents after a defection) against an
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automaton with rule §y; = (1,0, 1, 1) (which is more tolerant than tit for tat in
the sense that it forgives an opponent’s defection if it was matched by
a defection of its own).

(a) If both automata start with a C, they keep playing C forever. The
sequence is:

Sg: CCccccc. ..
S..: CCCCCCC. . ..

(b) If both automata start with a D, the Sg-automaton will keep playing
D forever, while the S;;-automaton will alternate between D and C. The
sequence looks as follows:

Ss: DDDDDDDDDDD. ..
Si1: DCDCDCDCDCD. ..
(c) if Sg starts with C and S, with D, we obtain
Sg: CDDDDDDDDDDD. ..
S11: DDCDCDCDCDCD. . .
(d) if, finally, Sy starts with D and S,; with C, the resulting sequence is
Sg: DDDDDDDD. ..
S11: CDCDCDCD. ..

The payoff in the infinitely repeated game is simply the average payoff per
round. In our example, for the player using the transition rule Sy the payoffis
(T + P) in cases (b), (c) and (d) and R in case (a).

Let us now introduce a small amount of random noise. More precisely, we
shall assume that the implementation of a move is subject to errors. (The
possibility that the perception of a move is erroneous will be dealt with in
Sect. 5.) This means that with a small probability ¢, one state is replaced by
another. Such events happen only rarely: the average length of a run of
unperturbed rounds is 1/e. The corresponding transition rule is given again by
a quadruple like S;, but with O replaced by ¢ and 1 replaced by 1 —¢&. These
numbers are the probabilities to play C after R,S, T or P in the previous
round.

More generally, we can consider stochastic automata with transition rules
given by quadruples p = (p,,p2, p3, ps) where p; is any number between 0 and
1 denoting the probability to play C after the corresponding outcome of the
previous round. The space of all such rules is the four-dimensional unit cube;
the corners are just the transition rules S;.

If a rule p is matched against a rule ¢ = (q;, 43,41, q¢), this yields a
Markov process where the transitions between the four possible states R, S,
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T and P are given by the matrix

iy pa(l—q1) A—pigy (1—p)(1—4qy)
P29s p2(1—q3) (1 —pi)gs (1 —p2)(1 —gqs)
p3q2 p3(l—qz) (1—ps3)gz (1 —p3)(1 —qa2)
Paqs  pa(l —q4) (1 —pa)qa (1 —pa)(1 — qa)

(note that p, is matched with g5 and vice versa; one player’s S is the other
player’s T). If p and g are in the interior of the strategy cube, then all entries of
this stochastic matrix are strictly positive, and hence there exists a unique
stationary distribution n = (n,, 7, 73, 74 ) such that pﬁ"), the probability to be
in state i in the n-th round, converges to n; for n—»o0(i=1,2,3,4). The
components 7; are strictly positive and sum up to 1. They denote the asymp-
totic frequencies of R, S, T and P. The stochastic vector 7 is a left eigenvector
of the matrix given by (2) for the eigenvalue 1.

It follows that the payoff for a player using p against an opponent using

q is given by

2

A(p,q) = Rmy + Sny + Tns + Prs . &)

We note that the n; and hence also the payoff are independent of the initial
condition, i.e. of the moves of the players in the first round.

For any noise level ¢ > 0, we can therefore compute the payoff obtained by
an automaton using transition rule S; against an automaton with transition
rule S;. The initial states of the two automata are irrelevant.

However, if we want to compute the limit value of this payoff for ¢ — 0, we
cannot simply plug the limiting values into the transition matrix given by (2).
If the p; are zeros or ones, this stochastic matrix contains many zeros, and is
no longer irreducible. Therefore, the stationary distribution = is no longer
uniquely defined.

We can instead use a more direct approach. Let us exemplify it for
Ss against S;,. We note that the four possible initial conditions lead (in
unperturbed runs) to two possible stationary states 4 and B, where 4 denotes
the run where both players use C, while B is the run where the Sg-player always
plays D and the S,,-player alternates between C and D. Suppose we are in
regime A. A rare perturbation causes one of the two players to play D: what
follows is either scenario (c) or (d), and hence leads after a few steps to regime B.
Suppose now that a perturbation occurs in regime B. With probability 3, it
causes the Sg-player to switch from D to C. If this happens while the S;,-player
plays C, we are in scenario (a) and hence back to regime A; otherwords, we enter
scenario (c), with the result that regime B is resumed. Suppose now that the
perturbation affects the S, ;-player. He either plays C instead of D, which leads
to scenario (c), or else he plays D instead of C, which leads to scenario (b): in
both cases, the regime B is reassumed after a few steps.

Thus a perturbation of B leads with probability  to 4, while a perturba-
tion of A4 leads always to B. The corresponding transition matrix is

01
(3 1) @
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The corresponding stationary distribution is (%, ). This means that asymp-
totically, an iterated game between an Sg-player and an S,;-player is in
one-fifth of the time in regime A and in four-fifths of the time in regime B. The
Sg-player receives an average payoff of

1 4(T+ P
3“5(“2—)

per round. The few rounds of transitions between the two stationary regimes
A and B occur with a frequency proportional to ¢, and hence do not affect the
average payoff in the limiting case.

This argument, repeated for each of the 256 entries, yields the 16 x 16
payoff matrix which is shown in Table 1. More precisely, each entry is
a 4-tuple (sy, 53, 53, 54), Where the s; are the average frequencies of R, S, T resp.
P. The corresponding payoff is

S1R+ 538 + 53T + 54 P

A few simple remarks: (1) the entries in the corners of the 16 x 16-matrix are
just the entries of the payoff matrix for the simple 2 x 2-game; (2) the trans-
pose of the entry (sy,s;,53,54) is the entry (s,,s3,55,54): the quadruples
(s1,52,53,54) are of the form (1,0,0,0), (%,4,0,0), (4,4,0,0), (3,1.1,0)
3,4,4,0), (3,4.4,0), 3,1.4.0), (3,1, 1,3), or permutations thereof.

Another, less conceptual but more direct approach is used in Esam (1994).
Let S;{c) be the strategy obtained from S; by replacing 0 by e and 1 by 1 — &.
For instance, S)o(¢) is given by (1 — ¢, ¢, 1 — ¢, &). For given i and j, let P(¢) be
the transition matrix (2), with p = S; and ¢ = S;. We may write

P(e) =P +¢Q, + 20,

where P is a stochastic matrix and Q; and @, have row sum 0. We may view
P(¢) as a perturbation of the matrix P and treat the problem of finding the left
eigenvector s(¢) of P(¢) as a perturbation problem. Thus we set

s)=n+ex+ely+---

where the stochastic vector ntis a solution of the unperturbed problem nP = 7,
whereas the components of the vectors x and y must sum up to 0. By
expanding s(¢) P(¢) = s(¢), and comparing powers of ¢, this yields not only the
limiting value = for the payoff (if ¢ converges to 0), but also the first order error
term x. (We note that we have, in general, to compare terms up to &2 in order
to determine = and x).

Which strategy is best for the whole population? We shall henceforth
consider only the generic situation where payoff values are pairwise distinct
and assume that R > P (this is no restriction of generality, since we can
exchange C and D). We have to distinguish two cases: (a) If 2R > T + §, the
maximal payoff attainable in a homogeneous population is R, which is
attained if all members play either S, or Sy, or ;5. (b) f 2R < T + S, the
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maximal payoff in a homogeneous population is 2 (2R + § + T), and it is
attained for Sy and §;,.

However, in a biological context, we cannot assume that the agents keep
the general welfare in mind. Those members of the population who are able to
increase their individual payoff will spread, even if this lowers the average
payoff of their group. In order to investigate such an evolution, we have to use
the methods of game dynamics.

3 Game dynamics for the Prisoner’s Dilemma

Let us assume that a population consists of n different types E, to E,, and that
x;(t) is the frequency of type E; at time ¢, so that the state of population at time
t is given by a vector x(t) in the unit simplex in R". If A is the n x n-matrix
whose element a;; is the average increase in fitness for an individual of type
E; encountering an individual of type E;, and if individuals meet randomly,
then the average increase in fitness for an individual of type E; within the
population is ) a;;x; = (Ax);, and the average increase of fitness within the
population is ), x;(Ax); = x Ax. We interpret each type as a strategy and its
payoff as increase in fitness, i.e. as reproductive success. According to the usual
replicator dynamics (cf. for instance Hofbauer and Sigmund 1988), we shall
assume that the frequencies x; evolve according to the ordinary differential
equation

X = x;[(Ax); —xAx)] . &)

This equation describes the action of selection upon the frequencies of the
competing strategies. We note in particular that if some strategies are missing
in the population, they are not introduced at a later time. Thus our model is
closed, in the sense that it does not admit the emergence of missing types
through mutation, migration or recombination. In particular, the corners of
the state simplex, i.e. the vectors e; of the standard basis, are equilibrium
points. They correspond to pure states consisting of type E; only.

We shall apply this to the two-state automata playing iterated 2 x 2 games
under the effect of a small noise term. Thus the different types in the popula-
tion correspond to the pure strategies S; and the payoff matrix A is given by
Table 1. Needless to say, a complete analysis of the 15-dimensional dynamical
system is a hopeless task. We shall consider special cases only, and start with
the Prisoner’s Dilemma.

(a) Competition of two strategies in the Prisoner’s Dilemma

Among 2 x 2-games, the Prisoner’s Dilemma is characterised by the
Inequalities
T>R>P>S and 2R>T+S. (6)
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Table 2. A list of the strategies outcompeting S;. Column (a) deals with the general case of
the Prisoner’s Dilemma, as specified by inequalities (6) in the text for instance, S, and
Sg always outcompete S, whenever the payoff values R, S, T, P satisfy (6). Column (b) lists
the strategies which outcompete S; (in addition to those from the previous column) for the
Prisoner’s Dilemma under the supplementary condition 2P < S + T. Column (c) lists the
strategies which, in addition to the previous ones, outcompete S; in the special case T = 5,
R =3, P=1,8 = 0. Column (d) lists the strategies outcompeting S; for the Chicken game
with T=1, R=0, § = —1, P = —10. Note the very good performance of the balanced
‘win-stay, lose-shift’ strategy S, in all these cases

(@) (b) (© G
Sy - 2,10 - 2,3,9,10,11,12, 14
S, 0,8 - 3,4,10 3,5,9,10,11,12
s, - 9,10,11 1 5,9,10,11, 14
Sy 04,89 - 1t 9,11
S, 08 - - 9,12,14
S; 0,1,4,8,9 - 2 9
Se 0,1,4,89 2,3,5,10,11,12 - 2,3,4,5,9,10,11,12, 14
S, 0,1,4,5,8,9 - 2,11,12 3,5,9,11
S, - 2,10 - 2,3,4,9,10,11,12,14
So - - 0,1 -
S0 914,15 11 - 9,11,13,14,15
S 9,12,14,15 - 0,1,4,58 -
S, 01,49 - 2,8 9,14
Sis 0,1,3,4,59,12 - 2,8 9
Sia  1,3,5,7,9,13 - 0,2,4,8 9,13
SIS 0)112) > a5,7597 12) 13 - 8 9,13

Let us first remark that for a large set of payoff values, no pure strategy is
evolutionarily stable: every pure strategy can be invaded, and even outcom-
peted by another pure strategy. (S; can be invaded by S; if the equilibrium
point ¢; is unstabe in the one-dimensional subsystem of (5) obtained by setting
x, = 0 for all k 5 i, j,i.e. by its restriction to the edge e;e; of the state simplex;
this occurs exactly if a; = a; and, in case equality holds, if furthermore
a;; > a;;. Strategy S; is outcompeted by S;if botha; 2 a;and aj; 2 ay), withat
least one inequality being strict. In this case, even the smallest S;-minority
introduced into an Si-population will eventually drive S; to extinction.)

We see from Table 2 that for any choice of payoff values for the Prisoner’s
Dilemma, all pure strategies except Sy, S5, S3, and S, are outcompeted by at
least one other strategy. If we assume, in addition to (6), that 2P < T + S, then
So,S; and Sy will also be always outcompeted, whereas S, will be out-
competed (by S, and S,) if 2R < T + P. We note that S, is particularly
good at getting established, in the sense that under general conditions, it
outcompetes the greatest number of rival strategies (even more than the
AllD-strategy S,), and that is as resistant as S, and the grim strategy
Sg against being outcompeted. In the next section, we shall discuss this
remarkable strategy in more detail. For the moment, we only note that its
mirror-image S, is the least able at invading or outcompeting a homogeneous
population.
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We stress the very mediocre showing of the tit for tat strategy S, in this
kind of ‘head-on’-confrontations with one single competing strategy. The
advantage of tit for tat appears mainly in heterogeneous populations, as noted
by Axelrod (1984) already.

Furthermore, the edges eyeg, €3¢y, €s¢,6 and ey,e, 5 consist of equilib-
rium points. It follows that S, and Sy are never evolutionarily stable. S is
uninvadable iff 2R > T + P.

(b) Axelrod’s payofi values

It is very difficult to obtain general results on the higher dimensional game
dynamics for the iterated Prisoner’s Dilemma, because there are so many
different cases to distinguish. We shall only consider one specific example,
using the payoff values mentioned in the introduction, which were used by
Axelrod in his celebrated computer tournaments: T =5, R=3, P=1 and
S=0.(Then 2P < § + T and 2R = T + P.) In this case, no pure strategy is
invasion proof, as seen from column (c) of Table 2.

There exist in this case 28 heteroclinic three-cycles: these are triples of
strategies S;,S; and S, where, like in the Rock-Scissors-Paper game, S; is
outcompeted by S;, S; by S, and Sy, in turn, by S; again. The corresponding
restriction of the game dynamics (5) to the two-dimensional boundary face of
the state simplex which is spanned by the unit vectors ¢;, ; and ¢, is well
understood (see e.g. Hofbauer and Sigmund 1988). It is easy to check that the
heteroclinic cycles SoS16811, S082811, 505259, S681059, 8151059, 51510511,
$15385,8;538,; and S,8,,5;, are attractors (within the corresponding face);
the cycles 5;511Ss, 57511514, S7811S15, 82811814, 52811815, §3811514,
853511515 2550514 and S,8:0S,5 are repellors; the heteroclinic cycles
S0S10S14, SOSISh SxS‘QS‘4, 51S10S15, SOSIOSIS, S15352 are filled with
periodic orbits and the cycles SgS(15;, SgS10511, Ss8105:4 and S5S;08,;5
with homoclinic orbits whose a- and w-limit is eg.

There are many other heteroclinic cycles on the boundary of the state
space, involving more than three saddle points, for instance, or saddles which
are mixed equilibria. We do not attempt to list them all, but emphasise that
they constitute more than a marginal feature of the dynamics.

Indeed, a straightforward computation (best left to a computer) shows that
there exists no completely mixed equilibrium in the full 16-strategies system
(no equilibrium with all 16 strategies present). It follows (cf. Hofbauer-
Sigmund 1988) that every trajectory starting from a completely mixed initial
state (i.e. with all x;(0) > 0) converges to the boundary. The behaviour on the
boundary seems to be extremely complex, and difficult to attack even by
numerical simulations, because some of the x;(¢) have 0 as lim inf (for ¢t — o0
without however converging to 0.

If this is remedied by adding a small unspecific term to the game dynam-
ical equation, then the numerical simulations exhibit violent oscillations
which can be regular or chaotic (see Nowak and Sigmund 1993a, where the
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Fig. 2. The phase portrait for the subsystem consisting of the strategies S,, So, 14, and S, 4,
for the case of the Prisoner’s Dilemma with parameter values T =5, R=3,P=1,5=0.
All orbits in the interior of the four-simplex converge to the attractor consisting of the
heteroclinic cycle e; — e, — €,, — €, — ;. There are two further heteroclinic cycles on the
boundary, namely ¢; —+e,, > €,; — €, and ¢, — €,, — €, — €, each attracting the orbits
on the corresponding three-face

numerical simulations were performed for the corresponding difference
equation).

In these numerical runs, the strategies S;,S0,510,511 have the highest
average frequencies. It is of interest, therefore, to investigate the evolution of
the corresponding subsystem. Again, each of these strategies is dominated by
another: in fact, there are no equilibria on the edges, and only two three-
strategies equilibria, one on the face §,5;05;; and the other on the face
S1510S11. On both faces, the orbits spiral outward toward the heteroclinic
orbit formed by the edges. Again, there is no interior equilibrium in the
four-strategy system, and the orbits have to converge to the boundary. The
numerical simulations suggest that the heteroclinic cycle formed by the four
corners (in the order given above) and the connecting edges is an attractor in
this case. (See Fig. 2.) It follows that in the subsystem consisting of these four
strategies, each one oscillates wildly: its frequencies have 0 as lim inf and 1 as
lim sup (as t —o0). A random perturbation will eventually cause one of the
strategies to reach fixation (the three others will be wiped out), but it is
impossible to predict which will be the winner.

It is instructive to follow the asymptotic evolution of this four-dimensional
system. The strategy S,, which always defects, is outcompeted by the tit for tat
strategy S;o. This is a rather weak effect: against S,, both S, and S0 do
equally well, but against S,0, S;, does better than S,. In an §,o-population,
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however, mistakes cause long series of retaliation, which lower the average
payoff; therefore, the more tolerant strategy S,;, which only defects after
having been played for a ‘sucker’ in the previous round, can invade and take
over. This very cooperative strategy can be invaded by the all-defect strategy
So, but better still by the parasitic bully S,, which cooperates only after its
defection has met with defection. §, actually takes over for a while, and almost
reaches fixation. It can be outcompeted by tit fot tat, but better still by the
relentlessly defecting Sy, so that a hegemony of S, is followed first by
a hegemony of S,, while tit for tat takes over much later.

It would be interesting to obtain an analytic proof that in the §,5;5,65;1-
system, the four-cycle is an attractor. Brannath (1994) has developed criteria
which unfortunately fail to cover this precise situation.

(c) A Chicken game

The Chicken game is characterized by the following ranking of the payoff

values:
T>R>S>P N

As ‘Hawk-Dove’-game, it has been used to explain the prevalence of conven-
tional fighting in innerspecific animal conflicts (Maynard Smith 1982). In this
case (C) means to adopt a conventional way to settle a conflict (by display,
outstaring the adversary, or engaging in a harmless pushing match) while (D)
means to escalate the conflict until the adversary flees or one of the con-
testants is disabled. In a one-round ‘Chicken’ game, each pure strategy can be
invaded by the other: game dynamics leads to a mixed population in an
evolutionary equilibrium. Since contests within animal communities are likely
to be frequent, it is plausible to assume that animals often engage in repeated
Chicken games, at least as long as the risk of a lasting injury is small.

Rather than considering the general case, we shall restrict our attention to
an example, and assume that R=0,T =1,P = —10 and § = —1. (In this
case, the evolutionarily stable equilibrium strategy in the one-round game
consists in escalating with a probability of 15.) Once more, the corresponding
system (6) admits no equilibrium in the interior of the state simplex; hence all
orbits have to converge to the boundary.

Again, we see that S does a very good job in any confrontation with one
single other strategy. It outcompetes every other strategy, with the exception
of S1,. (The edge e,,e, consists of equilibria.) A Pavlov-population playing
the Chicken game usually sticks to conventional display. A one-sided escala-
tion due to some mistake leads to one round of bilateral escalation, after
which conventional display is resumed. Again, the strategy S¢ which is the
mirror-image of Pavlov does worst in outcompeting other strategies. In
contrast to the Prisoner’s Dilemma case, there are now many situations where
§',~ invades S; and S;invades S;, leading to stable equilibria on the correspond-
Ing edges.
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4 The ‘win-stay, lose-shift’ strategies

In Nowak and Sigmund (1993b), we performed extensive game dynamical
simulations of the iterated Prisoner’s Dilemma in the space of stochastic
strategies (p(, P2, Ps, P4) With memory one. In these evolutionary runs, we
occasionally introduced small amounts of new strategies, and eliminated
those strategies whose frequencies dropped below a certain threshold. Under
such a mutation-selection regime, a huge variety of evolutionary chronicles
can be observed. The most interesting results were:

(a) a clear display of punctuated equilibrium for the average payoffin the
population. For very long periods of stasis, this payoff was confined to a value
close to P (a regime of defection) or to R (over-all cooperation);

(b) the runs displayed a pronounced tendency towards cooperation;

(c) among the cooperative populations, there was a strong trend to the
establishment of S,. It outperformed not only tit for tat, but even generous tit
for tat, a strategy which tolerates the co-player’s defection with a certain
probability (see Nowak and Sigmund 1992).

This highlights the interesting properties of the strategy Sy, which has
transition rule (1,0, 0, 1). This strategy was investigated at an early stage in
Rapoport and Chammah (1965), who called it a ‘simpleton’. It does poorly
against AIlID, since it switches endlessly between C and D, and hence is
exploited in every second round. Empirical studies on humans have confirmed
that S, is not particularly suitable to induce cooperation (see Rapoport and
Chammah, 1965). In a population of cooperators, however, it fares very well,
because it is to a large extent immune against errors, in contrast to TFT. If
two So-players interact, they cooperate almost always. An accidental mistake
leading to a unilateral defection is followed by one round where both players
defect, and then by a bilateral resumption of cooperation. Furthermore, an
So-player has no qualms about exploiting an AIIC player. Thereby, the
frequency of AlIC is kept low, which leaves little opportunity for exploiters
(whereas in a homogeneous tit for tat-population, AlIC can spread by neutral
drift, which paves the way for an invasion by defectors, as stressed in Axelrod
1984).

In the context of the Prisoner’s Dilemma, the strategy S, embodies a very
simple behavioural principle: win-stay, lose-shift. Indeed, an Ss-player who
experienced a T or an R in the previous round will use the same move again;
but after a P or an §, this player will try the alternative move. It is as if there
were a numerical threshold between R and P. If a round yields more than this
threshold value, it acts as a reinforcer and induces a repetition of the successful
move in the following round; if a round yields less, this is experienced as
a punishment and cues a shift in behaviour. Because of this almost reflex-like
reaction, the strategy So has been christened Pavlov (cf. Kraines and Kraines
1988).

Pavlov’s relatives, so to speak, are those ‘win-stay, lose-shift’ strategies
S; which act on a similar principle, but with a different threshold. Let us first
stick to the Prisoner’s Dilemma case. If the threshold is between T and R, we¢
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Table 3. The family of win-stay, lost-shift strategies. The
12 rows describe the 12 different payoff orderings
(Chicken is in the fourth row, the Prisoner’s Dilemma
occursin the sixth). They are followed by the correspond-
ing win-stay, lose-shift strategies, ordered according to
decreasing aspiration level: (a) the strategy Sy which
shifts behaviour in every round, (b) the ambitious strat-
egy which shifts except if it has achieved the highest
payoff, (c) the balanced strategy which shifts only if it has
obtained one of the two lowest possible payoff values,
(d) the modest strategy which shifts only for the Jlowest
possible payoff, and finally (e) the strategy S,, which
sticks to whatever it did in the previous round

S>T>R>P 3 7 5 13 12
T>S>R>P 3 1 5 13 12
S>R>T>P 3 7 15 13 12
T>R>S>P 3 1 9 13 12
S>R>P>T 3 7 15 14 12
T>R>P>S 3 1 9 8 12
R>S>T>P 3 11 15 13 12
R>T>S>P 3 11 9 13 12
R>S>P>T 3 11 15 14 12
R>T>pP>8 3 11 9 8 12
R>P>8>T 3 11 10 14 12
R>P>T>S§ 3 11 10 8 12

obtain the strategy S, with transition rule (0,0, 0, 1): this bully-like rule defects
if it can exploit a sucker, but switches as soon as it meets a defection. If the
threshold lies between P and S, we get Sy with transition rule (1,0, 0,0). This is
a grim strategy which never forgives a defection (and only forgets it by
mistake). Finally, there is the strategy S; with rule (0,0,1,1) which always
shifts its behaviour from one round to the next, and the strategy S, with rule
(1,1,0,0) which stubbornly repeats its previous move. These last two examples
correspond to the extreme cases of players who are never happy (resp. those
who are always content) with the outcome of the previous round.

Obviously, the ‘win-stay, lose-shift’-strategies depend on the rank order of
the payoff values of the simple 2 x 2-game. If we assume, as before, that the
four values R, s, T, P are pairwise distinct (which is generically the case) and
that R > P (which is no restriction of generality), then we get 12 different rank
orderings. In Table 3, we list these cases, as well as the three ‘win-stay,
lose-shift’-strategics corresponding to an ‘aspiration level’ which is (1) ambi-
tious, i.e. content only with the highest possible payoff, (2) balanced, i.e.
content with the two highest payoff values, and (3) modest, i.e. content with all
but the lowest payoff. The extreme strategies are, of course, always S; and S, ,,
independently of the rank ordering of payoff values.

From Table 3, one can draw a few immediate conclusions. (a) The strat-
egies S,,S 2,84 and S do never occur as ‘win-stay, lose-shift’-strategies;
(b) the ambitious strategies are § 1,87 and S;,, the balanced strategies
35,59,5,0 and Sts, the modest strategies Ss,513 and S,,.
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S, s,

Fig. 3. The phase portrait for the subsystem consisting of the three ‘win-stay, lose-shift’
strategies S,,S, and S; for the Prisoner’s Dilemma T =5, R =3, P =1, § = 0. The edge
ege, consists of fixed points. The interior of the simplex is filled with orbits whose a- and
w-limit lies on this edge

If the whole population is ambitious, it can never realise the highest
possible level of welfare (which, as we have seen at the end of Sect. 2, is R or
42R + S + T), depending on whether 2R > T + S or not). On the other
hand, the balanced strategy, or the modest, or both, can realise the highest
possible average payoff in all but the three following cases:

(i) If R > P > T > §, the highest average payoff R can never be realised
by a ‘win-stay, lose-shift’-strategy. In this case, the two players should obvi-
ously never deviate from the strategy C; but accidental mistakes in a game
between two ‘win-stay, lose-shift’-players triggers a self-defeating sequence of
responses which does not converge to a situation of mutual cooperation.

(i) If S > R > P > T, the highest average payoff can only be realised if it
is R,ie. in the case 2R > T + S.

(iti) The same result holds for T > R > P > S. We note that this implies
that in the Prisoner’s Dilemma case, the Pavlov strategy S, yields the best
outcome if adopted by the whole population. This does not mean that
evolution among ‘win-stay, lose-shift-strategies leads necessarily towards this
outcome. For R=4, S=0, T=8, P=1, for instance, which is not
a Prisoner’s Dilemma, the modest strategy Sg can outcompete an Sy-popula-
tion, and lead to a society of defectors. But in the case of the Axelrod values
R=3,8=0,T =5 and P = |, the edge ege, consists of equilibrium points,
and the e egey-face is filled with orbits having their a- and their @-limits on
this edge; all orbits in the interior of the system consisting of the 5 ‘win-stay,
lose-shift’-strategies converge to this face (see Fig. 3).
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Another interesting situation occurs in the Chicken game for the para-
meter values R=0, P= —10, T =1 and § = —1. In the §45,5;5-system,
So is evolutionarily stable, i.e. neither Sy nor S, can invade by themselves; but
there exists another stable mixture consisting of 20% of §,-players and 80%
of §y3-players. This is a bistable system: depending on the initial condition, the
outcome is either this §; — §;-mixture or a homogeneous Sg-population.

5 Discussion

One could tentatively divide the history of investigating the Iterated
Prisoner’s Dilemma into three parts, centering on the following questions:
(1) How would a perfectly rational being act? (2) What do human subjects
actually do? (3) Which strategies are adopted by simple agents, like animals
or automata? Obviously, there is no clear-cut separation between these
phases. Nevertheless, one detects a trend from superhuman via human to
subhuman. In the ’fifties, game theorists looked mainly for normative
prescriptions of the ‘right’ way to play the Prisoner’s Dilemma, whereas
the high water mark of psychological experiments was probably reached
in the ’sixties (see Rapoport and Chammah (1965), and the bibliography
by Guyer and Perkel (1972)). And in the late ’seventies, Axelrod’s computer
tournaments focussed attention both upon biological applications (see
Axelrod and Hamilton, 1981) and upon simple ‘programs’ to implement
strategies.

The idea to use automata for repeated games was explored in Aumann
(1981) (in Rapoport and Chammah 1968, we find a forerunner — the notion of
a ‘simpleton’ actually implementing the Pavilov strategy). Rubinstein (1986)
used finite automata (each associated with a ‘complexity cost’ given by its
number of states) and lexicographic utilities: first maximize payoff, and then
minimize complexity ( = number of states). Abreu and Rubinstein (1988) used
this (in the case of infinitely repeated games with limit-of-the-mean payoff) to
show that two machines in equilibrium must have the same number of states,
which must be matched one-to-one and fall into two classes: some states are
used exactly once in the beginning of the interaction, and some make up
a cycle which is then endlessly repeated. This allows for a very complete
analysis in the case of 2 x 2-games. (Banks and Sundaram (1990) have ana-
lysed alternative complexity measures.)

Another approach consists in studying populations of automata evolving
under selection. Thus Binmore and Samuelson (1992) show that an evolu-
tionarily viable outcome must be utilitarian, i.e. maximise the sum of the two
payoffs (for otherwise, mutant automata recognising each other by some
‘secret handshake’ could invade). Binmore and Samuelson show that no type
of automaton is evolutionarily stable, but that groups of co-existing types of
automata can satisfy a modified notion of evolutionary stability, and be proof
against any isolated invasion attempted by other strategies. Such outcomes
are utilitarian (see also the related work by Probst 1993).
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While this body of work sheds interesting light on the evolution of
populations playing the iterated Prisoner’s Dilemma, it concentrates on the
stability of equilibrium situations and does not investigate the dynamics of the
game (e.g. whether populations actually converge towards such a modified
ESS, or MESS.) Furthermore, the automata are assumed to work with perfect
precision. In biological applications, it seems plausible that simple decision
rules govern the behaviour of individuals, but that these rules will be fre-
quently affected by errors. In part, the analysis of repeated games played by
automata relies essentially on so-called ‘trigger states™ but in the presence of
errors, all states will always be visited. This has drastic effects on the outcome
of the game (see Selten and Hammerstein 1984 and Boyd 1989). For the
Prisoner’s Dilemma, for instance, the MESS consists of three strategies with
transition rules (1,0,1,0), (1,0,0,1) and (1,0,1,1), which do equally well
against each other (see Samuelson and Binmore 1992); but in the presence of
errors, the dynamical system formed by the corresponding strategies S,
S0 and S, has eq as global attractor.

We emphasize that the errors occurring in repeated games can be of varied
nature. In our paper, we have assumed that they are errors in implementing
amove, somewhat along the line of ‘trembling hand’ concept (Selten 1975). We
can also analyse the effect of errors in perception — in misunderstanding the
other’s C for a D, for example (see, e.g, Axelrod and Dion 1988 and Miller
1989). This type of errors can sometimes lead to quite different results. For
instance, the strategy Contrite Tit For Tat (see, e.g. Boyd, 1989) is proof
against errors in implementation, but not against errors in perception. This
strategy, which does not belong to the class of strategies discussed in this
paper, acts in principle like tit fot tat, but enters a ‘contrite’ state if it has, by
mistake, played a D rather than a C; in this case, it plays C after an opponent’s
D (i.e. accepts the retaliation), but leaves the contrite state. If such a player
erroneously thinks that the other player defected, it will play D without
switching into the contrite state, and will not meekly accept any subsequent
retaliation. In contrast to this, Pavlov is proof against both errors in imple-
mentation and errors in perception.

Let us denote by ¢ the probability of mistaking the other player’s previous
move, and by Ae the probability of mistaking one’s own previous move
(usually, 4 should be smaller than 1). The perturbation of the tit fot tat strategy
Sio1s (1 —¢g¢ 1 — g &), just as with mistakes in implementation. The per-
turbation of Sy is (1 — (4 + 1)¢, (A + 1), (4 + 1)g, 1 — (1 + 1)¢); that of Sp is
{0,0,0,0), i.e. no perturbation at all. In general, the strategy (uy,uy,us, Us)
turns into

(A — (@A + De)(uy,up,uz,uy) + e(uy, uy, ug,u3)
+ la(uﬁau‘hul’ul) + '182(1)’ —v, —V, v) )

where v=u; +us —u, —u;. Again, one can use the same methods
as in Sect. 2 to find the payoff values. For S, against S,, for instance, oné
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obtains
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We note that the error term reduces neither for 4 = 1 nor for 1 =0 to the
corresponding perturbation term for mistakes in implementation. Similarly,
one can consider the joint effect of errors in implementation and perception;
allow for different propensities to mis-implement (or mis-perceive) a C or a D;
investigate repeated games where the players move alternatingly, rather than
simultaneously (see Nowak and Sigmund, 1994), etc.

The book by Rapoport and Guyer (1976) contains a full taxonomy of all
2 x 2-games. We have only considered symmetric games in this paper. We are
still very far from fully understanding the effects of selection and mutation on
heterogeneous populations of two-state automata engaged in playing repeat-
ed games against each other. In a sense, by incorporating noise we simplified
the analysis by the factor 4, since the initial states became irrelevant. However,
the dynamical systems still have 16 variables; and as our handful of examples
shows, the asymptotic behaviour displays a bewildering richness. Axelrod
(1987), Miller (1989) and Lindgren (1991) studied evolutionary chronicles of
populations of automata playing the iterated Prisoner’s Dilemma, using
genetic algorithms to generate variety. Lindgren and Miller considered situ-
ations where errors occur (in Miller’s simulations, they were due to the
misperception of an opponents move). A particularly ingenious aspect of
Lindgren’s approach is to allow for a kind of ‘gene duplication’ which extends
the memory of the player. In many of his runs, the evolution leads towards
a class of strategies with memory length 2, which defect after having been
played for a sucker, but revert to cooperation after two consecutive rounds of
mutual defections. Such strategies can be viewed as sophisticated versions of
the Pavlov strategy S, (see also Sigmund, 1995).
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Physiological enzymatic cleavage of

leukocyte membrane molecules
Vladimir Bazil

Certain membrane molecules are enzymatically cleaved from the cell sur-
face and then released into the extracellular medium in the form of sol-
uble fragments. This process, commonly initiated by cell stimulation, may
regulate the surface expression of such molecules, and may also be
responsible for the production of their soluble forms in vivo. Here,
Viadimir BaZil provides an overview of the molecules that are cleaved
from cells, focusing particularly on leukocyte receptors. In addition, he
discusses the mechanisms and putative enzymes involved in this process,
as well as the potential physiological significance of such events.

Several membrane molecules are cleaved from the sur-
face of leukocytes and other cells by endogenous cellu-
lar enzymes, thereby releasing their soluble fragments
into the extracellular medium (Table 1). This has been
demonstrated in vitro using a combination of various
methods, including: (1) detection of soluble fragments
in the culture supernatant of surface-labeled cells;
(2) inhibition of the release of the soluble forms by
enzyme inhibitors; and (3) comparison of the apparent
molecular weight of the membrane form with the
released soluble form.

Two different pathways inducing receptor cleavage

The release of cell-surface molecules following cleav-
age in the membrane-proximal, extracellular domain is
commonly initiated by cell stimulation. Two different
Pathways inducing this process have been identified.
The first of these requires engagement of the relevant
membrane protein during the initial stage of cleavage
Induction. For example, CD14 (Ref. 1), CD43 (Ref. 8),

- CD44 (Ref. 9) and CD62L (L-selectin)?2® are cleaved

and released from the surface of leukocytes following

- Incubation in vitro with monoclonal antibodies (mAbs)

3
¢

at recognize these individual receptors, possibly simu-
ating the effect of their natural ligands. Crosslinking
o th? receptors on the cell surface is critical for their
effective cleavage. In addition, interleukin 3 (IL-3)!$
and CD27 ligand?* induce cleavage of their respective
Teceptors, demonstrating that natural ligands are also

- able 10 induce this process. The second pathway of re-

c > )
t(‘:ptor gleavage may be initiated either by natural fac-
ts which stimulate cells via receptors that are differ-

ent from the molecules to be cleaved, or by phorbol 12-
myristate 13-acetate (PMA), a potent synthetic acti-
vator of protein kinase C. Thus, cytokines and chemo-
tactic peptides induce cleavage of L-selectin'?’ and
tumor necrosis factor receptors (TNFRs)!4; immuno-
globulins interacting with cell-surface Fc receptors
induce cleavage of L-selectin?’; and anti-CD20 mAbs
(Ref. 26) or the CD40 ligand?” stimulate cleavage of
CD23. Furthermore, PMA initiates cleavage of CD14
(Ref. 1), CD16 (Ref. 3), TNFRs (Ref. 14), CD43
(Ref. 8), CD44 (Ref. 9), L-selectin!!?’, IL-6R (Ref. 16),
and membrane-anchored precursors of transforming
growth factor a (pro-TGF-a), c-kit ligand 1 (KL-1) and
KL-2 (Ref. 21).

The cleavage-triggering event may initiate two dis-
tinct activation processes. One mechanism may include
a conformational alteration of the membrane molecule
to be cleaved, exposing a cleavage site for the enzyme
involved. This process may be induced either by direct
binding of a particular ligand, or by a signal transduced
from a cytoplasmic compartment that results from
activation events independent of the molecule to be
cleaved. This intracellular signal may be mediated by
the modification of the cytoplasmic tail of the receptor,
such as by phosphorylation, or by the association/dis-
sociation of the receptor with other molecules or
cytoskeletal components. For example, the C-terminal
valine residue located in the cytoplasmic tail of pro-
TGF-a has been shown to be essential for PMA-
induced cleavage of this membrane-bound cytokine?,
Thus, an ‘inside-out’ signaling event that emanates
from the cytoplasm, and which requires the pro-TGF-a
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