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Abstract. Evolutionary game dynamics in finite populations can be described by a frequency
dependent, stochastic Wright-Fisher process. We consider a symmetric game between two
strategies, A and B. There are discrete generations. In each generation, individuals produce
offspring proportional to their payoff. The next generation is sampled randomly from this
pool of offspring. The total population size is constant. The resulting Markov process has two
absorbing states corresponding to homogeneous populations of all A or all B. We quantify
frequency dependent selection by comparing the absorption probabilities to the correspond-
ing probabilities under random drift. We derive conditions for selection to favor one strategy
or the other by using the concept of total positivity. In the limit of weak selection, we obtain
the 1/3 law: if A and B are strict Nash equilibria then selection favors replacement of B by
A, if the unstable equilibrium occurs at a frequency of A which is less than 1/3.

1. Introduction

Evolutionary game theory is the study of frequency dependent selection. The rel-
ative fitness of two (or more) phenotypes (strategies) is not constant, but depends
on the composition of the population. Traditionally, evolutionary game dynamics
are studied by deterministic differential equations describing infinitely large pop-
ulations. A wide-spread system is the celebrated replicator dynamic which was
introduced by Taylor & Jonker (1978) and Hofbauer, Schuster & Sigmund (1979).
Other game dynamics include imitation dynamics, best-response dynamics, mono-
tone selection dynamics and adjustment dynamics, see e.g. Hofbauer & Sigmund
(1998). All of these are deterministic descriptions applying to infinitely large pop-
ulations. Papers that deal with stochastic modifications include those of Foster &
Young (1990); Fudenberg & Harris (1992); Corradi & Sarin (2000); Dostálková &
Kindlmann (2004) and Imhof (2005a). For recent reviews and comprehensive treat-
ments of evolutionary game dynamics see Fudenberg & Tirole (1991); Binmore
(1993, 1998); Weibull (1995); Samuelson (1997); Fudenberg & Levine (1998);
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Hofbauer & Sigmund (1998, 2003); Gintis (2000); Nowak & Sigmund (2004) and
Imhof (2005b).

Imagine two strategies A and B engaged in a symmetric game with payoff
matrix

A B
A a b
B c d

(1)

Consider an infinite population and denote by x the frequency of A and by 1−x the
frequency of B. The payoff of A is fA = ax + b(1 − x). The payoff of B is fB =
cx + d(1 − x). The average payoff of the population is f̄ = xfA + (1 − x)fB . The
replicator dynamics assume that strategies reproduce proportional to their payoff.
We have

dx

dt
= x(fA − f̄ ).

This can be written as

dx

dt
= x(1 − x)(fA − fB).

If a > c and b > d then A dominates B; the only stable equilibrium is x = 1. If
a < c and b < d then B dominates A; the only stable equilibrium is x = 0. If a > c

and b < d then A and B are bi-stable; both x = 0 and x = 1 are stable equilibria;
there is an unstable equilibrium at x∗ = (d − b)/(a − b − c + d). If a < c and
b > d then A and B co-exist; both x = 0 and x = 1 are unstable equilibria; the
only stable equilibrium is given by x∗ = (d − b)/(a − b − c + d).

If a > c then A is a strict Nash equilibrium. The equilibrium x = 1 is stable;
an infinitesimally small amount of B cannot invade. A closely related concept is
evolutionary stability (Maynard Smith 1982). A is an evolutionarily stable strategy
(ESS) if either a > c or both a = c and b > d. Again, if A is an ESS, then strategy
B cannot invade. Note that strict Nash implies ESS, but the converse does not hold.
In both cases, however, a homogeneous population of A is protected by natural
selection against invasion by B.

The replicator dynamics and the uninvadability of a strict Nash equilibrium (and
an ESS) hold in the limit of infinitely large population size. It is natural to study
evolutionary game dynamics in finite populations. There are various approaches to
studying game dynamics in finite populations (Schaffer 1988; Kandori et al. 1993;
Fogel et al. 1998; Ficici & Pollack 2000; Schreiber 2001). In one such approach, a
frequency dependent Moran process was investigated (Nowak et al. 2004; Taylor
et al. 2004; Fudenberg et al. 2004). Again, let us consider the interaction between
two strategies A and B as given by payoff matrix (1). In each step of the stochastic
process, one individual is chosen for reproduction with probability proportional to
fitness. The offspring of this individual will replace a randomly chosen individual.
The total population size is constant and given by N . In the absence of mutation,
there are two absorbing states, corresponding to all A or all B. Denote by ρAB the
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probability that a single A player in a population of N − 1 B players will generate
a lineage that will take over the whole population. We say that selection favors A

replacing B if ρAB > 1/N , because for neutral drift the corresponding fixation
probability would be 1/N .

If A and B are strict Nash equilibria, then there is an unstable equilibrium of
the replicator dynamics at a frequency of A given by x∗ = (d −b)/(a −b−c+d).
For the frequency dependent Moran process, it can be shown that selection favors
A replacing B if x∗ < 1/3. This surprisingly simple ‘1/3 law’ holds in the limit of
weak selection and sufficiently large population size N . In particular, it turns out
that the conditions of a strict Nash equilibrium or an evolutionarily stable strategy
(ESS) do not imply protection by natural selection against invasion and replacement
in finite populations. Recent papers that deal with the frequency dependent Moran
process include Wild & Taylor (2004), Antal & Scheuring (2005) and Imhof et al.
(2005).

The Moran process is well known in population genetics (Moran 1962; Bürger
2000; Ewens 2004) where it is normally used to study the dynamics of constant
selection in finite populations. The Moran process describes a biological population
with asynchronous reproduction. At any one time step a single individual is chosen
for reproduction. There are overlapping generations. In contrast, the Wright-Fisher
process describes a biological population with discrete generations. All individuals
reproduce at the same time. They generate a pool of offspring from which the next
generation is chosen (Ewens 2004). Both synchronous and asynchronous reproduc-
tion occur in biological populations, but in population genetics the Wright-Fisher
process is more widespread than the Moran process (Ewens 2004). Therefore, we
would like to extend our analysis of evolutionary game dynamics in finite popula-
tions also to the Wright-Fisher process.

This is a difficult endeavour. The Moran process is a birth-death process and
consequently allows simple explicit solutions for the absorption probabilities. In
contrast, the Wright-Fisher process that we study here is a Markov process nearly
all of whose one-step transition probabilities are strictly positive, and the process
does not allow such explicit solutions. Nevertheless we can derive analytic results
and outline similarities and differences between the two processes. In particular, it
turns out that the same ‘1/3 law’ holds for the Wright-Fisher process.

A common approach to analysing Wright-Fisher-type processes for large finite
populations is to derive mathematically more tractable diffusion approximations.
In the present paper we do not rely on such an approximation and study the Markov
chain directly. In so doing we take advantage of the fact that the transition matrix is
totally positive, which gives useful information on the fixation probabilities. Most
of our results apply to every finite population size. Starting from these general
results, we also derive two assertions for sufficiently large finite populations (The-
orems 4 and 5). It is, however, straightforward to check whether a given population
size is indeed large enough in order that these assertions hold. This would not be
the case had we used the diffusion approximation.
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2. A Frequency Dependent Wright-Fisher Model

Consider a finite population consisting of N individuals, each playing either A or
B. If i players use strategy A, every A-player faces N − i opponents using strategy
B and i − 1 opponents using A. Under random mating, the expected payoff to
A-players is therefore given by

a(i − 1) + b(N − i)

N − 1
.

Similarly, the expected payoff to B-players is

ci + d(N − i − 1)

N − 1
.

We assume that the degree to which the payoffs contribute to fitness is specified by
a parameter w ∈ [0, 1]. Thus the fitness of A- and B-players is

fi = 1 − w + w
a(i−1)+b(N−i)

N−1 ,

gi = 1 − w + w
ci+d(N−i−1)

N−1 ,

respectively. Both in the deterministic replicator model for infinite populations and
in the stochastic replicator model of Fudenberg & Harris (1992), the evolution of
the population is determined by the difference between the fitness of each strategy
and the average fitness. Consequently, for these models the parameter w would
affect only the speed of evolution, but would not influence the long-run behavior
as long as w > 0. For finite population models, however, the parameter w does
have an impact on the long-run behavior. Note that the case w = 0 corresponds to
neutral selection.

We now define a Wright-Fisher process with frequency dependent fitness to
describe the evolution of the finite population. We assume throughout that all pay-
offs are positive. Suppose that in the current generation i individuals use strategy
A. Then the composition of the next generation is determined through N indepen-
dent binomial trials, where in each trial, the probability of producing an A-player
is given by ifi/(ifi + (N − i)gi). Let X(n) denote the number of A-players in
the nth generation. Then {X(n)} is a discrete-time Markov chain with state space
{0, . . . , N} and transition probabilities

pij =
(

N

j

) (
ifi

ifi + (N − i)gi

)j (
(N − i)gi

ifi + (N − i)gi

)N−j

. (2)

The states 1, . . . , N − 1 are transient, and the states 0 and N are absorbing. For
every initial configuration of the population, the process {X(n)} will reach one of
the absorbing states in finite time and will then stay there forever. That is, within
finite time, the whole population will use the same strategy.

Let xi denote the probability that the process, starting from X(0) = i, ends up
in state N . Of particular interest is ρAB = x1, the probability that a single invading
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A-player can take over a population of B-players. If x1 is larger than the corre-
sponding fixation probability for a neutral mutant, we say that selection favors A

replacing B.
To emphasize the dependence on w, we write xi = xi(w). If w = 0, the process

{X(n)} is a martingale, and the absorption probabilities are given by

xi(0) = i

N
. (3)

Thus selection favors A replacing B if ρAB = x1(w) > 1/N , and selection favors B

replacing A if ρBA = 1 − xN−1(w) > 1/N . For every w ∈ [0, 1], the probabilities
xi(w) are the unique solution of the linear equations

xi(w) −
N−1∑
j=1

pij xj (w) = piN , i = 1, . . . , N − 1. (4)

We now describe the relation between the fixation probabilities ρAB , ρBA and
the fitness differences fi −gi . While the fixation probabilities involve global aspects
of the dynamics and are difficult to evaluate, the fitness differences reflect only local
properties and are simple functions of the underlying game matrix and the popula-
tion size. Note that

f1 − g1 = w

(
b − d + d − c

N − 1

)
, fN−1 − gN−1 = w

(
a − c + b − a

N − 1

)
.

We say that selection favors A invading B if f1 > g1, and say that selection favors
B invading A if fN−1 < gN−1. The next theorem holds for any fixed w ∈ (0, 1]
and every population size N ≥ 2.

Theorem 1. a) If f1 ≥ g1 and fN−1 ≥ gN−1 with at least one inequality being
strict, then xk > k/N for all k = 1, . . . , N − 1, in particular, ρAB > 1/N and
ρBA < 1/N .

b) If f1 ≤ g1 and fN−1 ≤ gN−1 with at least one inequality being strict, then
xk < k/N for all k = 1, . . . , N−1, in particular, ρAB < 1/N and ρBA > 1/N .

Thus if selection favors A invading B and opposes B invading A, then for every
non-degenerate initial composition of the population, the probability of fixation at
all A is larger than the benchmark obtained by neutral selection. We then say that
selection favors A. In particular, in this case, A replacing B is favored whereas B

replacing A is opposed by selection.

Proof of Theorem 1. We are interested in the signs of the differences

δi = xi(w) − xi(0) = xi(w) − i

N
, i = 1, . . . , N − 1.

From (4),

δi −
N−1∑
j=1

pij δj = − i

N
+

N∑
j=0

pij

j

N
= − i

N
+ ifi

ifi + (N − i)gi

= i(N − i)(fi − gi)

N(ifi + (N − i)gi)
. (5)
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Every entry of the matrix P̃ = (pij )
N−1
i,j=1 is positive and since every row sum of P̃

is strictly less then 1, so is the spectral radius of P̃ . If f1 ≥ g1 and fN−1 ≥ gN−1
with at least one inequality being strict, then the expression on the right-hand side
of (5) is non-negative and does not vanish identically. It now follows by Theorem
2.1 in Seneta (1981) that the solution satisfies δi > 0 for all i, proving a). Part b)
follows by symmetry. ��
Corollary 1. Suppose c < b. Then there exists a number N0 ≥ 2, such that if the
population size satisfies N ≤ N0, selection favors A in the sense that xi(w) > i/N ,
i = 1, . . . , N − 1.

This is obvious from Theorem 1 and the fact that if N = 2, then f1 − g1 =
fN−1 − gN−1 = w(b − c). Since Theorem 1 gives only a sufficient condition for
selection to favor A, the maximal N0 for which that condition is satisfied will in
general be smaller than the maximal population size for which selection favors A.
If selection is weak, the precise threshold can be obtained from Theorem 3 a) in
the next section.

We say that selection favors change if it favors both A replacing B and B

replacing A. Selection opposes change if neither A replacing B nor B replacing A

is favored. The next theorem gives necessary conditions for selection to favor or
oppose change.

Theorem 2. Let N ≥ 3.

a) If ρAB < 1/N and ρBA < 1/N , then f1 < g1 and fN−1 > gN−1.
b) If ρAB > 1/N and ρBA > 1/N , then f1 > g1 and fN−1 < gN−1.

In words, if selection opposes change, then selection must already oppose A

and B invading each other. Selection can favor change only if mutual invasion is
favored. Note that if N = 2, then ρAB = 1 − ρBA, so that neither case a) nor case
b) of Theorem 2 can occur. This explains why only populations of size N ≥ 3 are
considered here.

The proof of Theorem 2 uses the concept of total positivity, see Karlin (1968).
A matrix is called totally positive if all its minors of every order are non-negative.

Lemma 1. The transition matrix (pij )
N
i,j=0 with entries pij given by (2) is totally

positive.

The proof of the lemma is in the appendix.

Proof of Theorem 2. We prove only a); the proof of b) is similar. Thus let

ρAB <
1

N
, ρBA <

1

N
. (6)

The fitness difference fi − gi is an affine function of i, that is, fi − gi is of the
form α + βi. Therefore, if f1 = g1 and fN−1 = gN−1, then fi = gi for every
i. This would imply ρAB = ρBA = 1/N , contradicting (6). Hence f1 �= g1 or
fN−1 �= gN−1. It now follows from (6) and Theorem 1 that

(f1 < g1 and fN−1 > gN−1) or (f1 > g1 and fN−1 < gN−1). (7)
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For an indirect argument assume that f1 > g1 and fN−1 < gN−1. Let δi =
xi(w) − i/N . It was shown in the proof of Theorem 1 that δ = (δ1, . . . , δN−1)

T is
the solution of [I − P̃ ]δ = h, where P̃ = (pij )

N−1
i,j=1, h = (h1, . . . , hN−1)

T and
hi = i(N − i)(fi − gi)/(N(ifi + (N − i)gi)), i = 1, . . . , N − 1. As the spectral
radius of P̃ is strictly less than 1, [I − P̃ ]−1 = ∑∞

k=0 P̃ k . Hence

δ =
∞∑

k=0

q(k), (8)

where q(k) = (q
(k)
1 , . . . , q

(k)
N−1)

T := P̃ kh.

It follows from Lemma 1 that P̃ , a submatrix of the transition matrix, is totally
positive. Thus, in view of the Binet-Cauchy formula, every power P̃ k is totally
positive as well. The assumption that f1 > g1 and fN−1 < gN−1 implies that
the sequence h1, . . . , hN−1 has exactly one sign change from + to −. It follows
from the theorem on variation-diminishing properties of totally positive matrices
(Karlin 1968, page 233) that for every k, the sequence q

(k)
1 , . . . , q

(k)
N−1 has either

no sign change or exactly one, which must be from non-negative to non-positive.
Specifically, for every k, q

(k)
i ≥ 0 for all i, or q

(k)
i ≤ 0 for all i, or else there exists

some i0 = i0(k) such that q
(k)
i ≥ 0 for i ≤ i0 and q

(k)
i ≤ 0 for i > i0. Let

k0 = inf
{
k ∈ N0 : (q

(k)
i ≥ 0 for all i = 1, . . . , N − 1) or

(q
(k)
i ≤ 0 for all i = 1, . . . , N − 1)

}
,

where inf ∅ = ∞. Then, for every k < k0, q(k)
1 ≥ 0 and q

(k)
N−1 ≤ 0. Thus if k0 = ∞,

then, by (8), δ1 ≥ 0, that is, ρAB ≥ 1/N , contradicting (6). Therefore, k0 < ∞.
If q

(k0)
i ≥ 0 for all i, then for every k ≥ k0, q(k) = P̃ k−k0q(k0) is a non-negative

vector. In particular, q
(k)
1 ≥ 0 for all k ≥ 0, so that again ρAB ≥ 1/N , contradict-

ing (6). A similar argument shows that if q
(k0)
i ≤ 0 for all i, then ρBA ≥ 1/N ,

contradicting (6). Thus the assumption f1 > g1 and fN−1 < gN−1 must have been
false, and it follows from (7) that f1 < g1 and fN−1 > gN−1. ��

3. Weak Selection

Let us study the fixation probabilities when selection is weak, that is, when w is
close to zero. Observe that if the derivative x′

1(0) is positive, then selection favors
A replacing B for w > 0 sufficiently small. Set yi = x′

i (0) and let f ′
i and g′

i denote
the derivatives of fi and gi with respect to w. Then y1, . . . , yN−1 are the unique
solution of the linear system

yi −
N−1∑
j=1

pij (0)yj = (f ′
i − g′

i )
i

N

(
1 − i

N

)
, i = 1, . . . , N − 1. (9)

Indeed, from (4) and (3),

yi −
N−1∑
j=1

pij (0)yj =
N−1∑
j=1

p′
ij (0)xj (0) + p′

iN (0) = 1

N

N∑
j=0

jp′
ij (0).
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But
∑N

j=0 jpij (w) is just the expectation of a binomial random variable with param-
eters N and ifi/(ifi + (N − i)gi), so that

1

N

N∑
j=0

jp′
ij (0) = ∂

∂w

ifi

ifi + (N − i)gi

∣∣∣∣
w=0

= (f ′
i − g′

i )
i

N

(
1 − i

N

)
.

This shows that y1, . . . , yN−1 are a solution of (9). The solution is unique since the
spectral radius of the matrix (pij (0))N−1

i,j=1 is strictly less than 1. It is shown in the
appendix that the solution is given by

x′
i (0) = i(N − i)

N − 1

{
a − b − c + d

3N − 2
(N + i − 1) −

(
d − b + a − d

N

)}
. (10)

The next theorem gives, for weak selection, a complete classification of the
fixation probabilities ρAB and ρBA in terms of a, b, c, d and N .

Theorem 3. Let

α = 4(b − c) + (a + 6b − 4c − 3d)(N − 2) + (a + 2b − c − 2d)(N − 2)2,

β = 4(b − c) + (3a + 4b − 6c − d)(N − 2) + (2a + b − 2c − d)(N − 2)2.

The following assertions hold for w > 0 sufficiently small.

a) If α > 0 and β > 0, then selection favors A: xi(w) > i/N for all i =
1, . . . , N − 1. If α < 0 and β < 0, then selection favors B: xi(w) < i/N for
all i = 1, . . . , N − 1.

b) If α > 0 and β < 0, then selection favors change: ρAB > 1/N and ρBA >

1/N .
c) If α < 0 and β > 0, then selection opposes change: ρAB < 1/N and ρBA <

1/N .

Proof. We have α = (3N −2)Nx′
1(0) and β = (3N −2)Nx′

N−1(0). Thus if α > 0
and β > 0, then x′

1(0) > 0 and x′
N−1(0) > 0. It is obvious from (10) that this

implies that x′
i (0) > 0 for all i = 1, . . . , N − 1. Therefore, for w > 0 sufficiently

small, xi(w) > xi(0) = i/N for all i. The other cases are similar. ��
We now turn to games that have two strict Nash equilibria and apply Theo-

rem 3 to analyse the Wright-Fisher process for large but finite populations. The
result is surprising and surprisingly simple: Let x∗ = (d − b)/(a − b − c + d),
which is the invasion barrier in the infinite population case. If x∗ < 1/3, selection
favors A; if x∗ > 2/3, selection favors B; otherwise selection opposes change.
The last statement remains true even if not just one mutant but a whole group of
mutants tries to invade, provided the population is large enough in comparison to
the group. Moreover, whether selection opposes change from A to B more strongly
than change from B to A depends simply on whether x∗ < 1/2.

Write ρAB(i) = xi and ρBA(i) = 1 − xN−i .

Theorem 4. Suppose a > c and d > b. Let i0 be a fixed group size. Then there
exists N0 ≥ 2 such that for every population size N ≥ N0 the following holds,
provided selection is sufficiently weak, that is, 0 < w ≤ w0(N).
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a) If x∗ < 1/3, then

ρBA(i) <
i

N
< ρAB(i), i = 1, . . . , N − 1.

b) If 1/3 < x∗ < 1/2, then

ρBA(i) < ρAB(i) <
i

N
, i = 1, . . . , i0.

c) If 1/2 < x∗ < 2/3, then

ρAB(i) < ρBA(i) <
i

N
, i = 1, . . . , i0.

d) If 2/3 < x∗, then

ρAB(i) <
i

N
< ρBA(i), i = 1, . . . , N − 1.

Proof. Note first that x∗ < 1/3 if and only if the leading coefficient a+2b−c−2d

of the polynomial defining α in Theorem 3 is positive; and x∗ < 2/3 if and only
if the leading coefficient of β is positive. Thus if x∗ < 1/3, then both α > 0 and
β > 0 for N sufficiently large. Part a) is therefore a consequence of Theorem 3 a).
Part d) follows along similar lines.

To prove b) assume that 1/3 < x∗ < 1/2. This is equivalent to a+2b−c−2d <

0 < a + b − c − d. Using the explicit expression (10) for x′
i (0) we obtain that for

every fixed i,

lim
N→∞

{
d

dw
ρAB(i)

∣∣∣∣
w=0

}
= lim

N→∞
x′
i (0) = i

3
(a + 2b − c − 2d) < 0,

lim
N→∞

{
d

dw
[ρAB(i) − ρBA(i)]

∣∣∣∣
w=0

}
= lim

N→∞
x′
i (0) + x′

N−i (0)

= i(a + b − c − d) > 0.

Consequently, there exists a number N0 such that (d/dw)ρAB(i)|w=0 < 0 and
(d/dw) [ρAB(i) − ρBA(i)]|w=0 > 0 for every N ≥ N0 and every i = 1, . . . , i0.
For these N and i, ρAB(i) < 1/N and ρAB(i) − ρBA(i) > 0, provided 0 < w ≤
w0(N). This proves b). The proof of c) is analogous. ��

Suppose that in the situation of Theorem 4, x∗ < 1/3. By solving two quadratic
equations one may explicitly determine a number N0 such that for every N ≥ N0
both α and β are positive. The assertion under part a) of Theorem 4 holds as soon as
N ≥ N0. In the remaining cases it is likewise straightforward to compute explicitly
a value N0 such that the inequalities for the fixation probabilities hold whenever
N ≥ N0.
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Example. Consider a game with payoff matrix[
a b

c d

]
=

[
22 2
1 12

]
.

Then b > c and a + 2b > c + 2d , so that x∗ < 1/3. Under weak selection, the
frequency dependent Moran process introduced in Nowak et al. (2004) will favor
A replacing B for every population size N . In the Wright-Fisher model, however,
selection favors A replacing B for N = 2 and N ≥ 8, but opposes A replacing B

for N = 3, . . . , 7.
We next present a dual result to Theorem 4 for games with an interior equilib-

rium point x∗. If x∗ < 1/3, selection now favors B; if x∗ > 2/3, selection favors
A. Otherwise selection favors change, and whether selection favors change from A

to B more strongly than change from B to A depends simply on whether x∗ < 1/2.

Theorem 5. Suppose a < c and d < b. Let i0 be a fixed group size. Then there
exists N0 ≥ 2 such that for every population size N ≥ N0 the following holds,
provided selection is sufficiently weak, that is, 0 < w ≤ w0(N).

a) If x∗ < 1/3, then

ρAB(i) <
i

N
< ρBA(i), i = 1, . . . , N − 1.

b) If 1/3 < x∗ < 1/2, then

i

N
< ρAB(i) < ρBA(i), i = 1, . . . , i0.

c) If 1/2 < x∗ < 2/3, then

i

N
< ρBA(i) < ρAB(i), i = 1, . . . , i0.

d) If 2/3 < x∗, then

ρBA(i) <
i

N
< ρAB(i), i = 1, . . . , N − 1.

The proof of Theorem 5 is similar to that of Theorem 4 and is therefore omitted.
Note that it is again straightforward to compute explicitly a threshold N0 such that
the claimed inequalities hold for every N ≥ N0.

4. A Different Playing Scheme

In calculating the fitness of A- and B-players we have so far used the expected
payoffs for random mating. That is, we assumed that between two consecutive time
steps of the Markov chain, either the game is infinitely often played or everyone
plays everyone else exactly once. A more realistic approach would be to assume
that the game is played by finitely many randomly chosen pairs. Then the realized
payoffs are stochastic, since they depend on what pairs have been chosen, and so
the transition probabilities of the Wright-Fisher process become more involved.
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In this section we study the simple case where at each time point n only one
randomly chosen pair plays the game. Every member of the population has fitness
equal to 1, except for the two players chosen. Their fitness is determined by the
payoffs of the game. More generally, the fitness of the two players is a convex
combination of their initial fitness, also equal to 1, and the payoffs. The degree to
which the payoffs contribute to fitness is measured by w ∈ [0, 1]. To calculate the
transition probabilities for a frequency-dependent Wright-Fisher process based on
this mating scheme, suppose that in the present population i players use strategy A

and N − i players use B. Then the probabilities that a pair of A-players, a mixed
pair, or a pair of B-players is chosen are, respectively,

πAA(i) = i(i − 1)

N(N − 1)
, πAB(i) = 2

i(N − i)

N(N − 1)
, πBB(i) = (N − i)(N − i − 1)

N(N − 1)
.

If two A-players are chosen, the total fitness of all the A-players is i − 2 + 2(1 −
w +wa) = i + 2w(a − 1) and the total fitness of the population is N + 2w(a − 1).
In this case, the next generation has a binomial distribution with parameters N and

β(i|AA) = i + 2w(a − 1)

N + 2w(a − 1)
.

The corresponding parameters for the two other possible pairs are

β(i|AB) = i + w(b − 1)

N + w(b + c − 2)
, β(i|BB) = i

N + 2w(d − 1)
.

The transition probabilities are mixtures of three binomial distributions:

pij =
(

N

j

)
{πAA(i)β(i|AA)j [1 − β(i|AA)]N−j

+πAB(i)β(i|AB)j [1 − β(i|AB)]N−j

+πBB(i)β(i|BB)j [1 − β(i|BB)]N−j }
Let

α = b − d + d − c + w(b − c)(d − 1)

N − 1
,

γ = a − c + b − a + w(a − 1)(b − c)

N − 1
.

Theorem 6. a) If α > 0 and γ > 0, then xi > i/N for all i = 1, . . . , N − 1, in
particular ρAB > 1/N and ρBA < 1/N .

b) If α < 0 and γ < 0, then xi < i/N for all i = 1, . . . , N − 1, in particular
ρAB < 1/N and ρBA > 1/N .

Proof. Set h(i) = E[X1|X0 = i]−i.As there are no mutations, h(0) = h(N) = 0.
Furthermore,

h(i) = N {πAA(i)β(i|AA) + πAB(i)β(i|AB) + πBB(i)β(i|BB)} − i,
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which shows that h is polynomial of degree 3. Thus h can have at most one sign
change in (0, N). We have

h(1) = 2(N − 1)wα

(N + w(b + c − 2))(N + 2w(d − 1))
,

h(N − 1) = 2(N − 1)wγ

(N + w(b + c − 2))(N + 2w(a − 1))
.

Hence if α > 0 and γ > 0, then h(1) > 0 and h(N − 1) > 0. This in turn implies
that h(i) > 0 for all i = 1, . . . , N − 1. That is, {Xn} is a submartingale, and it
follows from the optional stopping theorem (Karlin & Taylor 1975) that

i < E[X1|X0 = i] ≤ E[Xτ |X0 = i] = NP {Xτ = N |X0 = i} = Nxi,

where τ = inf
{
n : Xn ∈ {0, N}}. This proves a). The proof of b) is similar. ��

All the results for weak selection presented in Section 3 hold unchanged for
the mating scheme of the present section. To see this set yi = x′

i (0). Then, for
i = 1, . . . , N − 1,

yi −
N−1∑
j=1

pij (0)yj = 1

N

N∑
j=1

jp′
ij (0)

= d

dw
{πAA(i)β(i|AA) + πAB(i)β(i|AB)

+πBB(i)β(i|BB)}|w=0

= 2i(N − i)

N3(N − 1)
{d − a + (a − b − c + d)i + (b − d)N}

= 2

N

i

N

(
1 − i

N

)
(f ′

i − g′
i ).

Thus the derivatives of the current fixation probabilities satisfy exactly the same
system of equations as those in Section 3, apart from an unimportant constant factor
2/N . It is therefore obvious that Theorems 3 to 5 hold in the present situation as
well.

5. Discussion

In this paper, we have studied a Wright-Fisher process with frequency-dependent
selection in order to investigate game dynamics in finite populations with discrete
generations. We have compared the probability ρAB that a single individual using
strategy A takes over a population of B-players with the corresponding probability
under neutral drift, which is 1/N . We say that selection favors A replacing B if
ρAB > 1/N , selection favors change if ρAB > 1/N and ρBA > 1/N , and selection
opposes change if ρAB < 1/N and ρBA < 1/N . In the case of strong selection,
we have derived simple sufficient conditions for selection to favor one strategy
over the other and necessary conditions for selection to favor or oppose change,
respectively.
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For weak selection, we have obtained a complete characterization for selec-
tion to favor one strategy, or to favor or to oppose change. The characterization
involves only two simple quadratic polynomials in N . We have shown in an exam-
ple that the frequency dependent Wright-Fisher process can behave very differently
from the frequency dependent Moran process studied by Nowak et al. (2004) when
the population is small. However, the characterization yields that for sufficiently
large (but finite) populations, the ‘1/3 rule’ of the Moran process also holds for the
Wright-Fisher process: in the coordination case, selection favors A replacing B if
the unstable equilibrium point is less than 1/3. Our result also shows that in a finite
population model, the standard ESS condition does not imply protection against
invasion and replacement. This is in stark contrast to the standard model for infinite
populations, the replicator dynamics, where every ESS is proof against invasion.

6. Appendix

Proof of Lemma 1. The ith row of the transition matrix describes a binomial dis-
tribution with parameters N and πi = ifi/(ifi + (N − i)gi). We will show that
π0 < π1 · · · < πN . This implies that the matrix is totally positive, see Karlin (1968),
page 19. Note that πi < πi+1 is equivalent to E[X1|X0 = i] < E[X1|X0 = i +1],
which seems reasonable but needs to be verified. Regarding i as a continuous var-
iable, one has

d

di
πi = (N − i)2f1g0 + [(N − 1)igi + (N − i)(i − 1)g0]fN

(N − 1)[ifi + (N − i)gi]2 > 0. ��

Proof of (10). To solve (9), consider candidates of the form

y
(1)
i = i(N − i), y

(2)
i = i(N2 − i2), i = 1, . . . , N − 1.

Using the moment formulas for the binomial distribution, in particular

N∑
j=0

j3
(

N

j

) (
i

N

)j (
N − i

N

)N−j

= (N − 1)(N − 2)

N2 i3 + 3
N − 1

N
i2 + i,

one may verify that

y
(1)
i −

N−1∑
j=1

pij (0)y
(1)
j = i(N − i)

N
,

y
(2)
i −

N−1∑
j=1

pij (0)y
(2)
j = i(N − i)

N

{
1 +

(
3 − 2

N

)
i

}
.

As the right-hand side of (9) coincides with a third degree polynomial in i that
vanishes at i = 0 and i = N , it follows that the solution can be written in the form
yi = c1y

(1)
i + c2y

(2)
i . A somewhat tedious calculation shows that

c1 = − 1

N − 1

{
a − b − c + d

3N − 2
+ d − b + a − d

N

}
, c2 = a − b − c + d

(N − 1)(3N − 2)
.

��
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