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In this paper, we analyse mathematical models for the interaction between virus replication
and immune responses. We show that the immune system can provide selection pressure for
or against viral diversity. The paper provides new insights into the relationship between virus
load (= the abundance of virus in an infected individual) and antigenic diversity. Antigenic
variation can increase virus load during infections, but the correlation between load and
diversity in comparisons among different infected individuals can be positive or negative,
depending on whether individuals differ in their cross-reactive or strain-specific immune
responses. We derive two models: our first model applies to any replicating parasite that can
escape from immune responses; our second model includes immune function impairment,
and specifically describes infections with the human immunodeficiency virus (HIV). © 1997
Society for Mathematical Biology

1. Introduction. Virus load is an important determinant of the outcome
of infection with many viruses. In HIV infection, for example, asymp-
tomatic patients tend to have low virus load, while patients with AIDS
usually have high virus load. Mellors et al. (1996) showed that the virus load
in the first six months after infection is a strong predictor of the rate of
progression to AIDS. Patients with a low virus load remain asymptomatic
for a long period, while patients with high virus load progress rapidly to
disease and death. In infections with the human T cell leukemia virus
(HTLV-1), a large virus load is associated with chronic inflammatory
condition, while asymptomatic patients usually have a 10- to 100-fold lower
virus load (Bangham, 1993).

Many viruses reproduce rapidly in infected individuals and continuously
generate new mutants—so-called quasi-species (Eigen and Schuster, 1977).
The antiviral immune response provides selection pressure that favours
virus mutants which can escape from immune-mediated destruction. This
“antigenic variation” has been observed in several virus infections, includ-
ing HIV-1, HIV-2, HTLV-1, influenza virus, equine infectious anemia virus,
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and visna medi virus (Balfe et al., 1990, Holmes et al., 1992; Schulz et al.,
1990; Burns and Desrosiers, 1991; Overbaugh et al., 1991; Baier et al., 1980,
Clements et al., 1980; Salinovich et al., 1986; Ellis et al., 1987). Variation is
not only observed in epitopes recognised by antibody responses, but also in
epitopes recognised by cytotoxic T cell responses (CTL). There is evidence
for escape from CTL responses in infections with HIV-1, HTLV-1, hepatitis
B virus, LCMV and mouse retrovirus (Phillips et al., 1991; Niewiesk et al.,
1995; Pircher e al., 1990; Moskophidis and Zinkernagel, 1995; Meier et al.,
1995; Ferrari et al., 1996; Nowak et al., 1995; Price et al., 1996; Goulder
et al., 1996; Borrow et al., 1996).

Virus evolution during individual infections and antigenic variation has
been proposed as a potential mechanism for disease progression in HIV
infections (Nowak et al., 1990; Nowak et al., 1991; Nowak et al., 1995). This
theory of HIV infection is based on the assumptions that: 1) virus load
causes disease, 2) immune responses reduce virus load, and 3) virus
evolution during single infections increases virus load. The key result of this
theory is a dynamic threshold condition, which can be breached by virus
evolution leading to increasing antigenic diversity. This shaped the name
“antigenic diversity threshold,” but variation in other parameters such as
development of faster replicating virus strains can also overcome the
threshold (Nowak and May, 1992; de Boer and Boerlijst, 1994). It has also
been proposed that increasing immune activation leads to increasing virus
load and disease progression in HIV infection (McLean and Nowak, 1992a).

Mathematical models of HIV infection have also been developed to
describe the dynamics of antiviral drug treatment (McLean and Nowak,
1992b; Frost and Mcl.ean, 1994; Wei et al., 1995; Ho et al., 1995; de Boer
and Boucher, 1996; Herz et al., 1996; Perelson et al., 1996; Nowak et al.,
1997). This has led to estimates of turnover rates of HIV-infected cells and
free virus in infected individuals.

In this paper, we provide new insights into the relation between virus
load and antigenic diversity. We will first analyse a model without immune
function impairment. Such a model does not have a diversity threshold, but
antigenic diversity increases virus load during individual infections. This
first model applies to all viruses (or more generally, parasites) that cause
persistent infections and can generate antigenic variation. The second
model includes immune function impairment, and applies specifically to
HIV infection.

2. A Mathematical Model. The model describes a replicating viral (or
other) pathogen which is opposed by strain-specific and cross-reactive
immune responses. Let us consider the following system of ordinary differ-
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ential equations:

dUi/dt'“'Ui("i“Pixi“‘hZ) i=1,...,n
dx;/dt=cp;,—bx; i=1,...,n

dz/dt= Y kv; — bz.

j=1

Here, v; denotes the concentration of virus strain (or mutant) i, x, is the
magnitude of the specific immune response against strain i, and z is the
magnitude of the cross-reactive immune response directed at all strains.
There are n strains; each strain is characterised by a set of parameters: r,
denotes the replication rate of strain i, p, is the rate at which the strain is
killed by specific immune responses, g; is the rate at which the strain is
killed by cross-reactive immune responses, and ¢, and k; are the rates at
which strain i induces specific and cross-reactive immune responses. Spe-
cific immune responses x, decline at rate b;; the cross-reactive immune
response declines at rate b.
The system has 2" possible equilibria given by the equations

P 4
v;=0 or r,--—b—. b; (2)
¢;
1 n
z=— ) k. (4)
b/

c. D .
lpl ql ) (za)

Here, v’ = L}_, v;. We will now show that among the 2" possible equilibria,
there is only one stable equilibrium. For the stable equilibrium, we must
have that all strains with ¢/ =0 must be unable to invade, ie. their
transversal eigenvalue 90;/dv; =r; — p;x; — g,z at this equilibrium must be
negative. (The transversal eigenvalue denotes the per-capita growth rate of
virus strain / at the relevant boundary equilibrium where v; = 0. “Transver-
sal eigenvalue” is an expression coined by Hofbauer and Sigmund (1988).)

We assume that there is no specific immune response at the beginning, and
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therefore x; = 0. This leads to the condition r,—¢,z<0or r,/g,<v'/b. It
follows that we can rank the virus strains according to their ratio 7,/qg;.
Without loss of generality, we label the strains such that

rl/ql>r2/q2> “'>rn/qn‘ (5)

This rank order implies that if a certain equilibrium cannot be invaded by
strain i, it also cannot be invaded by any strain with an index greater than i.
Thus, it is sufficient to consider equilibria of the form v; >0fori=1,...,m
and v;=0for i=m+ 1,...,n. Let us call such an equilibrium E,_, and let
us denote the total (rescaled) virus population size at this equilibrium by
V, . By summation of (2a) over i =1,...,m, we obtain

v - )"fk,.a,./(n ik,.g,.) (©)
i=1

i=1

with a; = b,r;/(c;p;) and B, = b,q;/(bc; p;).
Equilibrium E,, is only stable if two conditions are fulfilled. First, strain
m must be able to invade equilibrium E,,_,. This is the case if

1
rm/qm>EKn—]) (7)

which is equivalent to V,, > V,,_,. Second, strain m + 1 must be unable to
invade equilibrium E,,. The condition that strain m + 1 cannot invade is

1
rm+l/qm+l<—EVm' (8)

It is straighforward to show that this condition is equivalent to V,, being
larger than I, |.

Therefore, the unique stable equilibrium of system (1) is characterised by
the highest rescaled virus load among all equilibria. If all strains stimulate
the cross-reactive response at the same rate, k; = k, then the unique stable
equilibrium is characterised by the highest viral load among all possible
equilibria. In this sense, selection maximises viral load. If there are differ-
ences in the stimulation of the cross-reactive response, then there is no
longer selection for maximum virus load, and a strain which induces a lower
viral load can outcompete a strain which induces a higher viral load
(Bonhoeffer and Nowak, 1994; Bonhoeffer and Nowak, 1995).

Thus, the way to define the stable equilibrium is the following: order all
strains according to their ratios r,/g;. Then determine the index m which
maximises V,,, the rescaled virus population size. If we go back to our
original variables v;, we can write the equilibrium load v by using (2a) and
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(6). With m defined in this way, the stable equilibrium is given by
vi=a;— BV, )

and the total viral load by

m

v= 2 = y a;— %BiVm‘ (10)
i 1 i=1

i=1 i=

We have now characterised the dynamical behaviour of system (1), and
have calculated the unique globally stable equilibrium. In order to gain
further analytical insight, particularly into the relation between virus load
and diversity, we consider the special case where p,=p, ¢,=¢, b,=b, and
k; =k for all strains. Thus, we analyse the simplified system

dv,/dt = v/r;,— px; — gz) i=1,...,n
de;/dt=cv,—bx, i=1,...,n (11)
dz/dt=kv —bz.

We rank the strains according to r, >r,> ... >r,. At equilibrium, the
individual virus strains have the abundances

¢;p

i=1,...,m (12)

Il =

and v, =0 for i=m +1,...,n. The total virus population size is

u=bz-;—l

i=1 i

mo 1

i=1 ~i

and m is the largest integer fulfilling

m-11
p+kg ) ——). (14)

i=1 i

m-1 r;
T'm > kq E -
i=1 Ci
Looking at (12), it is clear that br; — kqu is a declining sequence with i, and

that br; — kqu > 0 if i <m and br, — kqu < 0 if i > m. For a large number of
strains m, a good approximation is br,, — kqu = 0. Hence, for the relation
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between virus load v and diversity m, we derive the result

’ (15)
v kq T\

Figure 1 shows a computer simulation of the model described by (11).
New virus strains are added over time, which increases virus diversity and
virus load. The figure shows infection dynamics in two patients. One patient
has weak strain-specific immune responses, while the other patient has
strong strain-specific immune responses. In the weak responder, virus load
soon grows to high levels, but there is little selection pressure for antigenic
variation. In the strong responder, virus load is downregulated to low levels,
but the immune system provides strong selection for variation.

Weak responder Strong responder
10 10
o 8] - 8]
e 3
= 8] = 6]
g 4 .
,;_- 4: § 41‘
2] )
100 200 300 400 100 200 300 400
Time Time
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Figure 1. Evolution of virus foad and diversity in two individual patients. One
patient has a weak strain-specific inmune response, while the other patient has
a strong strain-specific immune response. In the weak responder, virus load
raises quickly to high levels, but the antigenic diversity remains low. In the
strong immune responder, virus load is maintained at low levels, while the
immune response selects for high diversity. In both cases, antigenic diversity
increases virus load. For the computer simulation, we use system (11) with r,
randomly chosen from a uniform distribution between 0 and 1, k=01, p=1,
g=1,b=1,and ¢;=0.1 (for all strains {) for the weak responder and ¢, = 5 for
the strong responder. There is a constant probability over time to produce new
antigenic variants, which increases the dimension n of the system. Virus
diversity is given by the inverse of the Simpson index D which is defined as
D=1 (v,/v)%
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The result can be understood in terms of competitive exclusion. In the
absence of strain-specific immunity, only the strain with the highest replica-
tion rate would win. Strain-specific immunity downregulates the abundance
of the fastest replicating strains, and therefore allows other strains to
persist as well.

In a cross-sectional comparison among different patients, do we expect a
positive or a ncgative correlation between virus load and diversity? If
individual patients differ in the strength of their specific immune response
(parameters ¢; and p) and in the intrinsic viral replication rates r;, but have
the same cross-reactive immune response (parameters k& and q), then (14)
and (15) predict a negative correlation between virus load and diversity.
Patients with stronger strain-specific immune response (high ¢; and p)
select for more diversity (higher m, lower r,) and lower virus load v
(Fig. 2). Equation (15) also gives an inverse correlation between load and
diversity if the ouly difference among patients is the replication rate r; of
individual virus strains.

If, on the other hand, k and g vary among patients while ¢; and p are
constant, then we must calculate the relation between kg and m before

10 10
X
8 X 8
© R X o |
g 6 X g 6
= XN\ X "
s X s 2
S 4 x S 4]
2] & 2]
10 20 30 40 50 10 20 30 40 50
Diversity (m) Diversity (1/D)

Figure 2. A cross-sectional comparison among different patients gives an inverse
correlation bctween viral load and diversity if the patients differ in their
strain-specific immune response. The figure shows equilibrium viral loads of
system (11) as given by (13). Individual virus strains have replication rates r;
which are takcn from a uniform random distribution on the interval (0,1). All
patients have the same cross-reactive response k = 0.1, but for different strain-
specific responses ¢ ranging from 0 to 1. (We assume that ¢; = ¢ for all strains.)
The other parameters are p=g=b=1. Therc are n =50 strains, and the
figure shows 100 patients, each characterised by an x. The left side of the figure
shows virus load v versus virus diversity in terms of numbers of strains m. The
continuous line represents the approximation given by (15), with a continuous
approximation for r,, = p(m) =1 —m/n. The right-hand side shows virus load
versus the inverse of the Simpson index as 2 measure for diversity. The Simpson
index is defincd as D = Z{(v;/v)%
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(15) can provide an answer. We get an elegant analytical approximation if
we assume ¢; = ¢ for all strains. (This simplification essentially means that
all immune responses are induced at the same rate.) Then the index m is
defined as the largest integer which fulfills

m-—1
r,> 3. ri/(¢+m) (16)

i=1

where ¢ = cp/(kq) is essentially the ratio of strain-specific over cross-reac-
tive immune responses. (We have also made the approximation that m —
1 =m.) If there is a very large number of strains, we can make a continuous
approximation, r, = p(i), and the index m can be defined as the solution of

the equation ’

p(m)m (17)

p(m) = St

where p(m) is the average replication rate for all strains with index up to
m. If we consider for the r; a uniform random distribution in the interval
(0,R), then we obtain p(m)=R(1—m/n) and p(m)=R[1-m/(2n)l
Equation (15) leads to

m*+2¢m —2¢n=0. (18)

For a given ¢ and n, the number of strains at equilibrium is

m=—¢+p*+2n¢. (19)

From (18), we also get kg = 2cp(n — m)/m?, which can be combined with
(15) to give
bR

v= m?. (20)
2¢cpn

Hence, with the assumption of r, following a uniform distribution, we
obtain a direct correlation between the virus load and the square of virus
diversity if individual patients differ in their cross-reactive responses against
the virus (Fig. 3).

3. An HIV Model. For HIV, we expand the previous model by including a
term for virus-induced impairment of the immune system. The basic model
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Figure 3, If patients differ in their cross-reactive response against the virus, the
model predicts a positive correlation between virus load and diversity. Parame-
ter values: p =g =b =1, n =50, 100 patients, r; from a uniform distribution on
(0,1), ¢ = 1, and k from an exponential distribution with mean 0.2 (simply to get
an equal density of points over the interval). The continuous line indicates the
analytical approximation given by (20),

then becomes
dL'i/dt=U,-(r,'—p,'x,'_’q,'Z) i=1)'-'5n

dx,/dt=c,.u,.—(b+ ):ujuj)x,. i=1,...,n

j=1

(21)

n n
dz/dt= 3 kv, —~ (b+ ). ujuj)z.

J=1 Jj=1

In this model, x; and z denote immune responses which require CD4 cell
help. HIV impairs such immune responses by reducing the CD4 cell
number and function. This is described by the terms which contain Y u v,
Again, without loss of generality, we rank the strains such that r,/q, >
r.,/q;> *+ >r,/q, There are two possibilities. Either the total virus
population size v=Y,v, grows to infinity or there is a unique stable
equilibrium given by

m k m k
ey ) oy L2 (22)
¢sP;

=1 G P

Uy T
DA
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1 ”’ kr
X, =—\n-
p1 ja]cpj
m kr
i /

A=(1+ iﬁ)(l—iﬁﬁ) ik”zq’ . (25)
J J

j=1CiPj =1 CPi] j=1 G P j=1CPj

} (23)

- q
L (24)
£

with

The number m is given by the largest index which fulfills

m—1 [y
/G > L

j=1 €iPj

m—lk. R
1+ Y -’—q—’) (26)

j=1 CjP;

For the total virus load at equilibrium, we obtain

m i m koa. m ,om k
u=3[2 _’_J_(Hzf_"f)_g 4y "’] (27)

A 1'=1cjpi i=1 iP; j=1CPj j= 1 6P

Whether this equilibrium exists or the virus population grows uncon-
trolled can be determined in the following way: check inequality (26) for
increasing values of m. If the inequality holds for a particular value of m,
then check if the corresponding virus load v given by (27) is positive. If it is
positive, augment m by 1 and check (26) again. The algorithm ends either if
an m is found such that v <0, or if an m is found such that inequality (26)
is violated. In the first case, the virus population grows to infinity; in the
second case, there is a stable equilibrium given by (22)—(24). Note that v in
(27) can only be negative if A is negative; hence, A <0 is essentially a
“diversity threshold” condition.

As a special case of (22)—(25), we get the complete equilibrium solution
to the basic model of the previous section (1) for u; =0 for all i. Interest-
ingly, this only affects A and v;, but x,, z, and v,/p are not affected by
immune function impairment. Note also that A >0 if u; =0 for all ..
Hence, the diversity threshold is a feature unique to viruses that impair the
immune response. (But for other viruses, there is still a “diversity advan-
tage” in the sense that increasing antigenic diversity increases virus load.)

As in Section 2, we will now consider a simplified model to gain some
analytical insight into the relation between virus load and diversity in HIV
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infections (see also Nowak and Bangham, 1996). Let us consider the special
case, where all strains have the same parameters p, g, k, b and u, and only
differ in their replication rates r; and their rate of stimulating the strain-
specific response c;. This leads to

dv/dt=v{r,—px;—qz) i=1,...,n
de;/dt=cp,—(b+uwv)x, i=1,...,n (28)
dz/dt=kv — (b + w)z.
The individual viral strains have the equilibrium frequencies
1
v = —[r(b + w) - kqu] i=1,...,m (29)
&p
and v;=0 for i =m + 1,...,n. The total virus load at equilibrium is given

by

p+qu——u2 ) (30)

1 fel

I)“’bz

1-1

The number of strains m is defined as the largest integer which fulfills

m-1p
I, > kg Z —

=1 Ci

m—ll

i=1

The denominator of (30) being positive is the diversity threshold condition.
If

m r

p+@2—>u2— (32)

I i=1 I

then the virus population converges to the finite equilibrium given above. If
the reverse holds, then the immune responses cannot control the virus
population. In mathematical terms, the virus population grows to infinity.
The cross-reactive response converges to the value k/u, and each strain
which fulfills r, > kq/u will grow.

From (29), we see that c,v; declines with increasing (. For a large number
m of strains, we can make the approximation c,v,, = 0, which leads to

br,,
= (33)
kq — ur,,
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This equation describes the relation between virus load v and antigenic
diversity m in patients below the diversity threshold.

Let us first assume that patients differ in their strain-specific responses
(parameters p and ¢), but not in their cross-reactive responses (parameters
q and k). If the patients are able to control the virus (inequality (32) holds),
then (33) describes an inverse correlation between viral load and diversity
(Fig. 4). If the patients are unable to control the virus (inequality (32) does
not hold), then the virus population tends to very high values, and the
number of strains i which will be present is given by the inequality
r;>kq/u. But in terms of relative frequency, some of these strains may
converge to zero. The minimum number of strains which are necessary to
overcome the diversity threshold is given by the smallest interger m such
that inequality (32) is violated. Exactly the same situation applies when the
only difference among patients is the rate at which individual virus strains
replicate.

_seeecw o800
10?
X
30
o)
g 10']
[}
2
S
3
10°
03 5 10 15 20 25 30 35 40 45 50

Diversity (m)

Figure 4. An inverse correlation between viral load and diversity for the HIV
model as given by system (28). The patients differ in their ability to mount
strain-specific immune responses against the individual virus strains. The indi-
vidual r; are taken from a uniform random distribution on the intervat (0, 1).
There are n =50 strains of virus. Each patient has thc same cross-reactive
response k=1, but the strain-specific responses vary from ¢ =0 to ¢ = 50.
Other parameters are p=g=5b=1 and u = 1.5, The figure shows 200 patients.
The crosses indicate patients who can contro! the virus to a finite equilibrium
load; the circles indicate patients who cannot control the virus (because their
diversity threshold is overcome). The figure shows virus load versus diversity, as
defined by the number m of strains present at equilibrium. For the patients who
cannot control the virus, the figure gives the minimum number of strains which
can overcome the threshold, The continuous line indicates the analytical ap-
proximation given by (33).
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Figure 5. A more complex pattern of viral load and diversity emerges for the
HIV model (28) if patients differ in their ability to mount cross-reactive immune
responses against the virus. Among those patients who can control the virus,
there is a direct correlation between load and diversity. Bul patients who cannot
contro! the virus are usually already unable to control a very small number of
strains. Parameters as Fig. 5, except u =1.02, n =100, ¢ =10, and k varies
from 0 to 10 in different patients. The continuous line indicates the analytical
approximation given by (34).

If, on the other hand, patients differ in their cross-reactive immune
response against the virus (parameters g and k), but not in their strain-
specific immune response, we find a positive correlation between virus load
and diversity (Fig. 5). For a large number of strains, we can again make a
continuous approximation for the replication rates r, = p(m). If the indi-
vidual r; are uniformly distributed on the interval (0, R), then p(m) =
R(1 —m/n). As before, we find that the number of coexisting strains at
equilibrium m is the root of the quadratic equation m?+2¢m —2¢n =10
with ¢ =cp/(kq) and ¢ =, for all strains. Using this equation to eliminate
kq in (33), we get

bRm?*

b= 2cpn — uRm*’ (34)

This describes a positive correlation between viral load and diversity.

4. Conclusions
1. In an individual infection, increasing the number m of viral variants
(by increasing the total number of variants n) leads to increasing virus
load. Antigenic diversity increases virus load.
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2. The immune system can select for or against antigenic diversity. The
amount of antigenic diversity which is selected in a given patient
depends on the ratio of strain-specific to cross-reactive immune re-
sponses: the stronger the strain-specific component of the immune
system, the more diversity; the stronger the cross-reactive component,
the less diversity (19).

3. In cross-sectional comparisons among different patients, the correla-
tion between virus load and antigenic diversity can be positive or
negative. If patients differ in their strain-specific responses, then a
weak responder allows a high virus load, but also provides little
selection for variation, while a strong responder reduces virus load to
low levels, but selects for high diversity. The resulting relation be-
tween load and diversity is negative. If patients differ in their cross-re-
active responses against the virus, then the models predict a positive
correlation between load and diversity: weak responders allow high
virus load, and also provide low selection for antigenic variation.

4. Recent studies of HIV-1 infection have shown that rapid disease
progression is often associated with weak immune responses, high
virus load and low genetic diversity (Delwart et al., 1994; Wolinsky et
al., 1996). Such a pattern is in agreement with the “antigenic diversity
threshold” theory if patients differ mostly in their strain-specific
immune responses (Nowak et al., 1996).
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