
Available online at http://www.idealibrary.com on
doi:10.1006/bulm.2002.0321
Bulletin of Mathematical Biology(2002)64, 1101–1116

Empathy Leads to Fairness
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In the Ultimatum Game, two players are asked to split a prize. The first player, the
proposer, makes an offer of how to split the prize. The second player, the responder,
either accepts the offer, in which case the prize is split as agreed, or rejects it, in
which case neither player receives anything. The rational strategy suggested by
classical game theory is for the proposer to offer the smallest possible positive
share and for the responder to accept. Humans do not play this way, however, and
instead tend to offer 50% of the prize and to reject offers below 20%. Here we study
the Ultimatum Game in an evolutionary context and show that empathy can lead to
the evolution of fairness. Empathy means that individuals make offers which they
themselves would be prepared to accept.

c© 2002 Society for Mathematical Biology. Published by Elsevier Science Ltd. All
rights reserved.

1. INTRODUCTION

An important aspect of understanding economic organizations and markets is
studying the decisions made by individuals given well-defined choices. One
model for human behavior in strategic interactions is given by the assumption
of ‘rationality’, suggested by classical game theory. However, in many decision-
making settings people do not behave as ‘rational’ agents who aim to maximize
their own income. A simple example where such ‘deviant’ behavior arises, is given
by the Ultimatum Game (Güthet al., 1982).
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The rational solution in the Ultimatum Game emerges as follows: a rational
responder, bent on maximizing his monetary payoff, should accept any nonzero
offer. A rational proposer should therefore make the smallest nonzero offer, on the
assumption that it will be accepted.

In experiments, human subjects do not play this way. They are far more apt to
share the spoils and ready to punish individuals who do not want to share. The
average offers are between 40 and 50% of the total sum, with 50% being the modal
offer. One half of offers of 20% or less are rejected [seeThaler(1988), Güth and
Tietze(1990), Rothet al. (1991), Bolton and Zwick(1995), Roth(1995), Sigmund
et al. (2002)].

It has been suggested that people behave this way because they are maximizing
a utility function which is not simply given by their monetary payoff, but rather
includes some inequity aversion term (Kahnemannet al., 1986; Kirchsteiger, 1994;
Bethwaite and Tompkinson, 1996; Fehr and Schmidt, 1999). Another explanation
is that players do not understand that they play the game with each individual
only once and so do not need to consider the effects of their behavior on future
interaction (Rubinstein, 1982; Rothet al., 1991; Roth, 1995; Bolton and Ockenfels,
2000).

The Ultimatum Game has also been studied in the context of evolutionary game
theory. In this framework players give rise to offspring in proportion to their
total payoffs. Offspring inherit the strategies of their parents subject to a small
mutational error. Evolutionary simulations of the standard Ultimatum Game lead to
the evolution of strategies close to the rational strategy predicted by classical game
theory, that is players offer negligible amounts and are prepared to accept those
paltry offers. If, however, there is some probability of finding out about players’
previous encounters and thus that reputation plays a role (Nowaket al., 2000) then
fairness can evolve. Another mechanism for the evolution of fairness involves
players playing with restricted groups of their spatial neighbors and competing
with the same individuals for offspring (Pageet al., 2000).

In this paper we show how empathy can lead to the evolution of fairness. In
Section2, we introduce a mechanism in which a fixed proportion,α, of players
employ strategies withp = q, where p is the offer made by a player andq is
the minimum offer that the player will accept. This leads to values ofp andq
close to 1/2, the fair split. In this case, however, ifα is allowed to evolve, it
tends to zero and hence fairness does not evolve. We must therefore postulate
that some other mechanism gives rise to a small proportion of ‘empathic’ players.
We analyse the adaptive dynamics of this system in Section2.2, first for the case
of strong selection (Section2.2.1) and then for the case of proportional selection
(Section2.2.2). In Section3 we discuss an alternative approach to empathy in
which players’ strategies are given by their maximal offerp and minimum demand
q. In this case players give offers uniformly distributed in[0, p] with probability
1−α and in[q, p] with probabilityα. In this caseα evolves towards 1 and fairness
evolves. The adaptive dynamics of this system is analysed in the Appendix.
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Table 1. Table of the time averages of the average offer and acceptance level within the
population for different values ofα. In each simulation, the population consists of 100
individuals and the time averages are performed over generations 105

− 106. In the upper
section, the mutation errorµ = 0.01 and in the lower sectionµ = 0.001.

α p q

µ = 0.01
0.0000 0.1115 0.0521
0.0010 0.1139 0.0542
0.0100 0.1443 0.0838
0.1000 0.3748 0.3236
0.2000 0.4448 0.3956

µ = 0.001
0.0000 0.0557 0.0391
0.0010 0.0739 0.0568
0.0100 0.2944 0.2806
0.1000 0.4718 0.3236
0.2000 0.4919 0.3956

2. EMPATHY

We call the property of making offers the player himself would be prepared to
accept, ‘empathy’. For a fuller discussion of the meaning and origin of empathy,
seePreston and de Waal(2001). The following sections investigate the effects of
empathy on the outcome of evolutionary simulations of the Ultimatum Game.

2.1. It only requires a small proportion ofp = qp = qp = q-players to lead to the evolution
of fair splits. Interestingly, we need only demand that a small proportion of
players play strategies on the linep = q, to lead evolution towards strategies close
to the fair split strategy. We assume that a proportionα of the total population plays
p = q, either by offering theirq-value or by demanding theirp-value. We assume
that this behavior is not passed on to their offspring who simply adopt the strategy
(p, q) with probability(1 − α) and are randomly chosen to play a strategy on the
line p = q with probability α. The offspring are apportioned with probabilities
proportional to the total scores of the parents.

Table 1 shows the average values ofp and q obtained in simulations with
various values ofα. The number of individuals in the population was 100 and the
mutational error was 0.01 and 0.001. The values were averaged over generations
105

− 106. We can see that a small proportion of empathic ‘p = q’ players can
lead to a significantly fairer outcome.

2.2. Adaptive dynamics.The standard adaptive dynamics framework derives a
differential equation for the evolution of the average strategy within a population
in terms of the continuous parameters describing the strategies. It is assumed that,
at any one time, the population is homogeneous and a rare mutant with parameters
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close to those of the resident strategy is introduced. This strategy can invade if its
payoff against the resident strategy is greater than the resident’s own payoff against
itself. The adaptive dynamical equation describes the evolution of the population
strategy in the direction of the mutant which obtains the maximal payoff against
the resident. For a parameterβ, the equation is given by

β̇ =
∂E(S′(β ′), S(β))

∂β ′

∣∣∣∣
S′→S

. (1)

This framework applies for a large population, provided that the payoffs are
continuous in the parameters and there are no stable equilibria between strategies
[seeNowak and Sigmund(1990), Metz et al. (1996), Geritz et al. (1997, 1998),
Dieckmann(1997), Hofbauer and Sigmund(1998)].

The Ultimatum Game has payoffs which are discontinuous inp andq at the line
p = q. In Page and Nowak(2001) we show how to extend the framework to
apply to games which have discontinuities in their payoffs. We do so by replacing
the payoff against a homogeneous resident by the average payoff against a slightly
heterogeneous resident population.

Here we take the same approach for the game in which a player with strategy
S(p, q) plays(p, q) with probability 1−α and(q, q) with probabilityα. Thus the
payoff obtained by a player with strategyS′(p′, q′) against a population distributed
in a small region aroundS(p, q) is given by

E(S′, S̄) = (1 − α)2E0(S
′(p′, q′), S̄(p, q)) + α(1 − α)[E0(S

′(q′, q′), S̄(p, q))

+ E0(S
′(p′, q′), S̄(q, q))] + α2E0(S

′(q′, q′), S̄(q, q)), (2)

whereE0 represents the expected payoff in the standard Ultimatum Game.
We assume that the resident population has strategies uniformly distributed in an

ε-neighborhood of(p, q), so that

E(S′, S̄) =
1

ε2

∫ q+ε/2

q−ε/2

∫ p+ε/2

p−ε/2
E(S′, S2)dp2dq2. (3)

The adaptive dynamical equations thus yield

ṗ = −(1 − α) (4)

q̇ =
α

ε
(1 − 2q) −

α

2
, (5)

for p > q + ε/2,

ṗ = 0 (6)

q̇ =
α

ε
(1 − 2q) −

α

2
, (7)
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for p < q − ε/2 and

ṗ =
1 − α

ε

(
1 − 2p + q −

ε

2

)
(8)

q̇ =
α

ε
(1 − 2q) −

(1 − α)q

ε
−

α

2
, (9)

for p ∈ [q − ε/2, q + ε/2].
Hence, forp ∈ [q − ε/2, q + ε/2], p increases andq decreases, whereas for

p > q + ε/2, p decreases andq tends to a fixed value. Thus at equilibrium the
system performs a two-cycle between two points close to and on opposite sides of
the line p = q + ε/2. We denote these two points by(p1, q1) and(p2, q2).

Close to the linep = q + ε/2 we have to consider the exact type of selection.
The dynamics depend on the way in which offspring are selected. We define
‘proportional selection’ to mean that each member of the subsequent generation is
assigned a specific parent with probability proportional to that parent’s total score.
We define ‘strong selection’ to mean that the player with the highest total score in
one generation gives rise to all the offspring in the next.

2.2.1. Strong selection.In the case of strong selection the point(p1, q1) will
be the point with the highest score in the population uniformly distributed around
(p2, q2) and vice versa.

We find that the score in a population centered around(p, q) is maximized by
p′

= q + ε/2 andq′
= p − ε/2. Thusp1 ≈ q2 + ε/2 andq1 ≈ p2 − ε/2. In a

finite population these equalities will not be exact and the score decreases from the
maximum less rapidly on the sidesp′ > q + ε/2 andq′ < p− ε/2, thus we expect
p2 > q1−ε/2 andq2 < p1−ε/2. At equilibrium, we should havep2+q2 = p1+q1

and hence∂
∂t (p + q) = 0. Sincep2 > q1 − ε/2 andq2 < p1 − ε/2, this implies

[from equations (4) and (5)]

− (1 − α) +
α

ε
(1 − 2q) −

α

2
= 0 (10)

and hence

q =
1

2

(
1 −

(2 − α)ε

2α

)
. (11)

Thus the adaptive dynamics predict that forα � ε, the average strategy in the
population will tend to a fair split.

We simulate a population of players who each play one another and who offer
their p-values in a proportion(1 − α) of the interactions and theirq-values in the
remaining proportionα. We use a deterministic payoff in which the payoff between
two players is given by 1− α times the payoff when the offerer gives hisp-value
plus α times the payoff when he gives hisq-value, rather than assuming that in
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Figure 1. Plot of the time average of the population average ofp (crosses) andq (dots)
againstα, in a simulation of the Ultimatum Game with strong selection, in which players
offer theirq-values a proportionα of the time. The line represents the analytical prediction
from the adaptive dynamics. The values forp andq are almost identical. There were 100
individuals in the population, the mutation error/spread in the population was 0.001 and
the averages were performed over generations 5000–50 000.

each interaction a player randomly chooses to offer hisq-value with probabilityα.
This corresponds to assuming that players interact many times. In each generation
the player with the highest score is selected and gives rise to all the offspring in
the following generation. These offspring have strategies uniformly distributed in
anε-neighborhood of the parental strategy. This process of strong selection means
that we know that at any one time the population is uniformly distributed with
spreadε.

Figure1 shows the time average values of the averageq-value in a population
of 100 individuals withε = 0.001, for various values ofα, compared with the
analytical prediction forq of equation (15). There is good agreement.

2.2.2. Proportional selection. In the case of proportional selection, the strate-
gies in the population will not be uniformly distributed, so that the calculations
involved in the derivation of the adaptive dynamics will not be exact. However, we
assume that they hold roughly and thatε is the effective spread in the population. In
this case, the pressure to changep andq in the population centered around(p1, q1)

must be equal and opposite to the pressure to changep andq in the population
centered around(p2, q2). Thus, we should havedp/dq(p1, q1) = dp/dq(p2, q2).
Using equations (4), (5), (8) and (9) and assuming, without loss of generality, that
p1 > q1 + ε/2 and thatp2 ∈ [q2 − ε/2, q2 + ε/2], we find that

−(1 − α)
α
ε
(1 − 2q1) −

α
2

=

1−α
ε

(1 − 2p2 + q2 −
ε
2)

α
ε
(1 − 2q2) −

(1−α)q2
ε

−
α
2

, (12)

wherep1 ≈ p2 ≈ q1 ≈ q2.
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To leading order inε, this yields

a(1 − 2q1)(1 − q1) = q1 = p1 = p2 = q2, (13)

wherea = α/(ε(1 − α)). This has solution

p1 = q1 = p2 = q2 =
3a + 1 −

√
1 + 6a + a2

4a
. (14)

Fora � 1, q ≈ 1/2 − 1/(2a).
Thus, once again, the adaptive dynamics predict that forα � ε, the average

strategy in the population will tend to a fair split.
We again perform numerical simulations in which players obtain payoffs equal

to 1− α times the payoff that they would get if they offered theirp-values plusα
times the payoff that they would get if they offered theirq-values. Figure2 shows
the averagep- andq-values in a population of 100 individuals, with mutational
error 0.001, compared with the analytical estimate. In this case, we calculate
the spread within the population from numerical simulations. We compute the
standard deviation inp and inq within the population. We approximate the spread
in the population by the value it would take if the population were uniformly
distributed, that is 2

√
3× the standard deviation. The agreement between the

analytical estimate and the numerically computed average values ofp and q,
although less exact than in the strong selection case, is still good.

2.3. Evolution of empathy. Thus we have shown that fairness can evolve, if
for some reason a fixed proportion of the population employs empathy. This
proportion,α, can be very small and need only exceed the mutational spread,ε.

The disadvantage of this approach as an explanation of the evolution of fairness
is that, if α itself is allowed to evolve, then it tends to zero and the offers and
demands also tend to zero. The adaptive dynamical equation inα, for the case in
which players offer theirq-values with probabilityα, is given by

α̇ =
1 − q

2
−


(1 − p) p > q + ε/2
(1−p)(p−q+ε/2)

ε
p ∈ [q − ε/2, q + ε/2]

0 p < q − ε/2.
(15)

Thus α̇ < 0 for p > q. So, according to the adaptive dynamics,α will evolve
towards 0.

Hence, in the present framework, we require external reasons for the existence
of empathy in order to explain the evolution of fairness.

We note that the use ofp = q to induce fairness can work the other way round.
We can show that if a proportionα instead demand as responders theirp-value,
then the offer,p, evolves towards 1/2, for α � ε, but the demandq does not
change, provided it is less thanp. In simulations of the evolutionary dynamics,q
drifts randomly in the regionq < 1/2.
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Figure 2. Plot of the time average of the population average ofp (crosses) andq
(dots) againsta = α/(spread(1 − α)), in a simulation of the Ultimatum Game with
proportional selection, in which players offer theirq-values a proportionα of the time.
The line represents the analytical prediction from the adaptive dynamics. There were
100 individuals in the population, the mutation error was 0.001 and the averages were
performed over generations 5000–50 000. The spread was estimated from the numerically
computed standard deviations inp andq, which were roughly 0.0025 in all cases. The
values ofα range from 0.0 to 0.1.

3. AN ALTERNATIVE APPROACH TO EMPATHY

Now we take a slightly different approach to the evolutionary Ultimatum Game.
We once again assume that players have some minimal threshold proportion,
q, of the sum which they are prepared to accept. This time we assume a
more symmetrical form of strategy in which the players’p values determine
the maximumoffer that they are prepared to make. The actual offer in any one
interaction is taken from a probability distribution on[0, p]. For simplicity we
assume a uniform distribution on[0, p]. In each generation every player plays
every other player once in the role of proposer and once in the role of responder.
The payoffs from each interaction are added and the number of offspring that a
player leaves is in proportion to his total payoff. Offspring inherit their parent’s
strategies plus or minus a small random error∈ [−ε/2, ε/2].

We numerically simulate this game with a population of 100 individuals and a
mutational error ofε = 0.01 over 100 000 generations. The results are shown in
Fig. 3, where we plot the average offer (= p/2) and the average demand (q) in the
population. As with the previous framework, the system evolves to one in which
players offer and demand very small shares of the total sum.

Now, we introduce a probabilityα that a player always makes offers which he
himself would be prepared to accept. The strategy of a player is now given by three
parametersS(p, q, α). In any one interaction, with probabilityα, the player makes
an offer from a uniform distribution in[q, p] and, with probability 1−α, the player
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Figure 3. Numerical simulation of the evolutionary Ultimatum Game in which a player’s
strategy is determined by the parametersp, the maximum offer that he is prepared to
make, andq, the minimum offer that he is prepared to accept. There are 100 individuals
in the population, each of whom play one another once in the role of proposer and once
in the role of responder. The number of offspring of a player is proportional to his total
payoff. Offspring inherit their parent’s strategies plus or minus a small random error in
[−0.005, 0.005]. We plot the average offer(p/2) in the population and the average demand
(q) against time. We see that evolution leads near to the rational solutionp = q = 0.

makes an offer from a uniform distribution in[0, p]. Figure4 shows the results of
a numerical simulation for a fixed value ofα which is the same for all players. We
see that, unlike in the model described above in whichα refers to the probability
of offering exactly one’sq value, smallα values do not have a dramatic impact on
the long-term evolution and once again near rational strategies are obtained.

We now ask, however, what happens ifα is allowed to evolve. Figure5 shows
the results of numerical simulations. We find thatα tends to almost one and hence,
ultimately, players are almost certain to make offers which they themselves would
be prepared to accept. This empathy for their coplayers leads to the evolution of
fair offers and demands.

We once again apply the modified adaptive dynamics (Page and Nowak, 2001)
to the model described in this paper (see Appendix for details). We find

α̇ =

[
1

p − q
−

1

p

]
(1 − p/2 − q/2)(p − q) (16)

and henceα → 1, providedp > q. Forα = 1,

ṗ =
1

(p − q)


q−p

2 +
ε
8

(1−q)
(p−q)

+ O
(

ε2

p−q

)
p > q + ε/2

(1−p)(p−q)
∈

− 1/2 +
q
2 +

ε
8

(1−q)
(p−q)

+ O
(

ε2

p−q

)
q < p < q + ε/2

 (17)

q̇ =
1 − p − q

2(p − q)
+ o(1). (18)
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Figure 4. Numerical simulation of the evolutionary Ultimatum Game in which a player’s
strategy is determined by the parametersp, the maximum offer that he is prepared to
make, andq, the minimum offer that he is prepared to accept. There are 100 individuals
in the population, each of whom play one another once in the role of proposer and once
in the role of responder. The number of offspring of a player is proportional to his total
payoff. Offspring inherit their parent’s strategies plus or minus a small random error in
[−0.005, 0.005]. We plot the average offer(p/2+αq/2) in the population and the average
demand(q) against time. In these simulations a player has a probability 0.1 of always
making offers in the range[q, p] rather than[0, p]. The average offers and demands are
not very different from the caseα = 0.0 shown in Fig.1.

Thus, to leading order, at equilibrium

p = q =
1
2. (19)

Thus, the modified adaptive dynamics support the results of these simulations
and predict the emergence of fairness in this case.

4. CONCLUSIONS

For the Ultimatum Game, both classical game theory and standard evolutionary
game theory predict that players will offer and accept negligibly small proportions
of the total sum to be shared. In experiments, human subjects do not play that way.
They usually reject offers as high as 30% of the total and offer between 40 and
50%. Here, we show that, if a small proportion of players project their acceptance
thresholds on to others and offer what they themselves would be prepared to accept,
then this leads to the evolution of players who demand and offer a fair share of the
total sum. We show that this evolution is predicted by (a modified version of) the
adaptive dynamics. The analysis shows that offering one’sq-value introduces a
pressure forq to increase in order to avoid rejection. This pressure onq to increase
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Figure 5. Numerical simulation of the evolutionary Ultimatum Game in which a player’s
strategy is determined by the parametersp, the maximum offer that he is prepared to
make, andq, the minimum offer that he is prepared to accept. There are 100 individuals
in the population, each of whom play one another once in the role of proposer and once
in the role of responder. The number of offspring of a player is proportional to his total
payoff. Offspring inherit their parent’s strategies plus or minus a small random error in
[−0.005, 0.005]. We plot the average offer(p/2+αq/2) in the population and the average
demand(q) against time. In these simulations a player has a probabilityα of always
making offers in the range[q, p] rather than[0, p]. Initially all players haveα = 0.0,
but α is allowed to evolve and is subject to a mutational error in each generation which
is randomly distributed in[−0.005, 0.005]. We plot the average value ofα within the
population against time. We see thatα evolves towards 1.0 and that the fact that players
always make offers that they themselves would accept leads to the evolution of equal
sharing of the total prize.

in turn creates a pressure forp to increase. However, in this context, evolution
favors α → 0, whereα is the probability that a player offers his acceptance
threshold, and hence neither empathy nor fairness will evolve. Thus we must rely
on α being set by other processes if we are to see the evolution of fairness. We
should note that by fairness, in this context, we refer to an even split of the total
sum to be shared. It is of interest that fairness has been described by others as
‘some type of do-as-you-would-be-done-by principle’ (Binmore, 2001), which in
our discussion is somewhat similar to the notion of empathy and offering what you
yourself would accept.

We have also studied an alternative set-up in which a player offers anything up
to his p-value with probability 1− α. With probability α he offers at least his
q-value. We have found that in this context in the Ultimatum Game, empathy
is evolutionarily favored and results also in the evolution of equal sharing of
the prize. This is independent of an assortative structuring of the population
or of knowledge of other players’ strategies, such as is necessary in reputation
effects and strategies designed for repeated interactions, or of the possession of a
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utility function more complicated than the monetary payoff. We have shown how
evolutionary game theory can explain human behavior in the Ultimatum Game,
which is not explicable by classical game theory. In this context players’ strategies
have an intermediate level of complexity. They are more sophisticated than the
simple prescribed strategies in which a player offersp and demandsq, according
to his genetic programming, but they do not require the level of reasoning of the
classical ‘rational’ player who must reason about his opponent’s rationality. Here
he simply asks, ‘how would I behave in his place?’

APPENDIX

Strategies are given by the maximal offer,p, that a player is prepared to make, the
minimal offer,q, that he will accept and the probability,α, that he always makes
an offer that he himself would accept. The actual offer,x, made by a player in a
given interaction is uniformly distributed in[0, p], with probability 1− α and in
[q, p] with probabilityα.

Thus the expected score obtained by a player with strategyS′(p′, q′, α′) against
a player with strategyS(p, q, α) is given by

E(S′, S) =
α′

p′ − q′

∫ p′

q′

(1 − x′)H(x′
− q)dx′

+
(1 − α′)

p′

∫ p′

0
(1 − x′)H(x′

− q)dx′ (A.1)

+
α

p − q

∫ p

q
x H(x − q′)dx +

(1 − α)

p

∫ p

0
x H(x − q′)dx,

whereH is the Heaviside function.
Thus against a population with strategies(p, q) uniformly distributed in[p −

ε/2, p + ε/2] × [q − ε/2, q + ε/2], the player with strategyS′ scores on average

E(S′, S̄) =
1

ε2

∫ p+ε/2

p−ε/2

∫ q+ε/2

q−ε/2
E(S′, S)dqdp. (A.2)

The modified adaptive dynamics [seePage and Nowak(2001)] thus yields

α̇ =
∂E(S′, S̄)

∂α′

∣∣∣∣
S′→S

=
1

p − q

∫ p

q
(1 − x′)H(x′

− q)dx′
−

1

p

∫ p

0
(1 − x′)H(x′

− q)dx′ (A.3)

=

[
1

p − q
−

1

p

] ∫ p

q
(1 − x′)dx′

> 0 (providedp > q).
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Thus, the adaptive dynamics predicts thatα → 1, ast → ∞.
So we consider the dynamics forp andq, with α = 1. We have

ṗ =
∂

∂p′

[
1

p′ − q′

1

ε2

∫ p+ε/2

p−ε/2

∫ q+ε/2

q−ε/2

∫ p′

q′

(1 − x′)H(x′
− q)dx′

]
dqdp

∣∣∣∣∣
S′→S

(A.4)

=
1

p − q

1

ε

∫ q+ε/2

q−ε/2
(1 − p)H(p − q)dq

−
1

(p − q)2

1

ε

∫ q+ε/2

q−ε/2

∫ p

q
(1 − x′)H(x′

− q)dx′dq

=
1

(p − q)2

1

ε

[
(1 − p)(p − q)

{
ε p > q + ε/2
p − q + ε/2 q < p < q + ε/2

−

∫ q+ε/2

q−ε/2
p − Max(q, q′) − p2/2 + Max(q, q′)2/2dq

]

=
1

(p − q)2

[
(1 − p)(p − q)

{
ε p > q + ε/2
p−q
ε + 1/2 q < p < q + ε/2

− p + p2/2 +
1

ε

∫ q+ε/2

q
(q − q2/2)dq +

1

2
(q − q2/2)

]

=
1

(p − q)2

[
(1 − p)(p − q)

{
ε p > q + ε/2
p−q
ε + 1/2 q < p < q + ε/2

−p + p2/2 +
[(q + ε/2)2 − q2

]

2ε
−

[(q + ε/2)3 − q3
]

6ε
+

1

2
(q − q2/2)

]

=
1

(p − q)

[
(1 − p)

{
1 p > q + ε/2
p−q
ε + 1/2 q < p < q + ε/2 − 1 +

p + q

2
+

1

(p − q)

(
ε

8
−

ε

8
q −

ε2

48

)]

=
1

(p − q)


q−p

2 +
ε
8

(1−q)
(p−q)

+ O
(

ε2

p−q

)
p > q + ε/2

(1−p)(p−q)
∈

− 1/2 +
q
2 +

ε
8

(1−q)
(p−q)

+ O
(

ε2

p−q

)
q < p < q + ε/2

 .

(A.5)

Thus we find thaṫp > 0 when 0< p − q < 1/2
√

ε(1 − q). Now

q̇ = −
1

p − q
(1 − q)

1

ε

∫ q+ε/2

q−ε/2
H(q′

− q)dq

+
1

(p − q)2

1

ε

∫ q+ε/2

q−ε/2

∫ p

q′

(1 − x′)H(x′
− q)dx′dq

−
1

ε2

∫ p+ε/2

p−ε/2

∫ q+ε/2

q−ε/2

∫ p

q
xδ(x − q′)dxdqdp (A.6)

= −
1 − q

2(p − q)
+

1

(p − q)2

1

ε

∫ q+ε/2

q−ε/2
p − p2/2 − Max(q, q′) + Max(q, q′)2/2dq
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−
1

ε2

∫ p+ε/2

p−ε/2

∫ q+ε/2

q−ε/2

q′H(q′
− q)H(p − q′)

p − q
dpdq

= −
1 − q

2(p − q)
+

1

(p − q)2

[
p − p2/2 −

1

2
(q − q2/2) −

1

2ε

[
(q + ε/2)2

− q2

−
1

3
(q + ε/2)3

+
1

3
q3

]]
−

q

ε2

∫ p+ε/2

p−ε/2

∫ q

q−ε/2

H(p − q′)

p − q
dqdp

=
1

(p − q)2

[
−

(1 − q)(p − q)

2
+ p − p2/2 −

1

2
(q − q2/2) − q/2

−ε/8 + q2/4 + εq/8 + ε2/48

]
+

q

ε2

∫ p+ε/2

p−ε/2
ln

(
p − q

p − q + ε/2

)
H(p − q)dp.

Now at equilibrium, we will havep−q is O(
√

ε) and sop−ε/2 > q andH(p−q)

is 1 for all values ofp in the above integral. Thus

q̇ =
1

p − q

[
−(1 − q)/2 + 1 − (p + q)/2 −

ε(1 − q)

8(p − q)
+

O(ε2)

p − q

]

+
q

ε2

∫ p+ε/2

p−ε/2
ln

[
1 −

ε/2

p − q + ε/2

]
dp

=
1

p − q

[
1 − p

2
−

ε(1 − q)

8(p − q)
+

O(ε2)

p − q

]

+
q

ε2

∫ p+ε/2

p−ε/2
ln

[
1 −

ε/2

p − q + ε/2

]
dp

=
1

p − q

1 − p

2
−

q

2ε

∫ p+ε/2

p−ε/2

1

p − q + ε/2
dp+ o(1)

=
1

p − q

1 − p

2
−

q

2ε
ln

p − q + ε

p − q
+ o(1)

=
1

p − q

1 − p

2
−

q

2(p − q)
+ o(1)

=
1 − p − q

2(p − q)
+ o(1). (A.7)

Thus to leading order, at equilibrium,

p = q =
1
2. (A.8)

So the adaptive dynamics agrees with numerical simulations in predicting that
α → 1 andp, q →

1
2 ast → ∞.



Empathy Leads to Fairness 1115

REFERENCES

Bethwaite, J. and P. Tompkinson (1996). The ultimatum game and non-selfish utility
functions.J. Econ. Psychol.17, 259–271.

Binmore, K. (2001). How and why did fairness norms evolve?Proc. British Acad.110,
149–170.

Bolton, G. E. and A. Ockenfels (2000). A theory of equity, reciprocation and competition.
Am. Econ. Rev.90, 166–193.

Bolton, G. E. and R. Zwick (1995). Anonymity versus punishment in ultimatum bargain-
ing. Game Econ. Behav.10, 95–121.

Dieckmann, U. (1997). Can adaptive dynamics invade?Trends Ecol. Evol.12, 128–131.

Fehr, E. and K. M. Schmidt (1999). A theory of fairness, competition and cooperation.
Q. J. Econ.114, 817–868.

Geritz, S. A. H., J. A. J. Metz, E. Kisdi and G. Meszena (1997). Dynamics of adaptation
and evolutionary branching.Phys. Rev. Lett.78, 2024–2027.

Geritz, S. A. H., E. Kisdi, G. Meszena and J. A. J. Metz (1998). Evolutionarily singular
strategies and the adaptive growth and branching of the evolutionary tree.Evol. Ecol.
12, 35–37.
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