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1. INTRODUCTION

In this paper, we study evolutionary dynamics of a game with two strategies
andB. The payoff matrix for the game is

A B
Ala b
Blc d

StrategyA player receives payof when phying against another strateéyplayer,
and payoffc when phying against a stratedy player. A strategyB player would
receive payoff$ andd when phying againstA and B players, respectively.

We denote byx, andxg the frequency of individuals adopting strate@yand B
respectively. We haves + xg = 1. The fitnesses oA andB players are given by

fa =axa + bxg

fg = cxa + dXg.

The dandard model of evolutionary selection dynamics in a single, infinite, pop-
ulation of players is the replicator equatio&ylor and Jonkerl978 Hofbauer
et al., 1979 Hofbater and Sigmund1998 2003. In our setting, these equations
take the form

Xa = Xa(fa—9)
1)

Xg = Xg(fg —¢)

where¢ is the average fitness of the population given by
¢ = faxa + feXg.

This set of replicator equations describes a deterministic selection process, where
the per capita rate of growth for each strategy is given by the difference between
its fithess and the average fitness of the entire population.

Sincexa + Xg = 1, we see that

Xa = Xa(1 = Xpa)(fa— fB)
and
fa—fe=@—0xa+ (b—d)(1—Xa).

The gquilibrium points are either on the boundary or in the interior. There are three
generic outcomes:
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(1) A dominatesB. If a > c andb > d, then the entire population will even-
tually consist of A players. The only stable equilibrium ;s = 1. A
is a strict Nash equilibrium, and therefore an evolutionarily stable strategy
(ESS), whileB is not. We use the notatioA<~—B.
(2) AandB coexist in stable equilibrium. & < candb > d, then te interior
equilibriumxa = 52=3— is stable. NeitheA nor B is a Nash equilibrium.
This is often referred to as a Hawk—Dove, mixed strategy, or polymorphic
game by biologists. We use the notatién— < B.
(3) A andB are bi-stable. Ifa > candb < d, the equilibrium point in the
interior wherex, = ﬁ is unstable, and the two boundary points where
Xa = 0 orxa = 1 are #tracting. A andB are both strict Nash equilibria. We
use the notatiolA <—— B.

Obviously ifa < candb < d, thenB dominatesA. This stuation is identical to
the first case withA and B exchanged.

If a = candb = d, then f5 = fg for all frequencies. In this singular case,
the two strategies are equally good. The frequency distribution does not change
from one generation to the next. We call this the neutral case, and denote it by
A—-B.

Evolutionary game theory has been successfully applied to the study of Dar-
winian process of natural selectioMdynard Smith 1982. The deterministic
model of evolutionary dynamics of a two-strategy game is well understeoster
and Young(1990 andFudenberg and Harri€l992 have analyged stochastic ver-
sions of the replicator equations on a continuum populatmreber (2007) and
Benaimet al. (2003 analyze urn processes that converge to the replicator equations
ove time as the population becomes infinite. However, evolution in finite groups
of players has received less attention, and most of the analytic results are for vari-
ants of the best-reply dynamics [e.andori et al. (1993, Young(1993]. For
the Hawk—Dove gameFpgelet al., 1997 1998 Ficici and Pollack2000 report
some simulations of the ‘frequency dependent roulette wheel’ selection dynamic,
which is equivalent to the Moran process that we anali{fogelet al. (1997, 1998
emphasize that the finite population results can be very different than the predic-
tions of the replicator equation, whikcici and Pollack(2000 argue that the two
models make fairly similar predictionsMaynard Smith(1988 argues that in a
finite population a mixed evolutionarily stgbstrategy(ESS) is mordikely than
genetic polymorphism in the Hawk—Dove game. Like Sshaffer(1988 focuses
on the fact that the strategy that maximizes absolution payoff need not be the one
that maximizes relative payoff when the population is finite; this leads Schaffer to
define and analyze a modification BES. It seemsatural to extend our under-
standing to a stochastic model for finite populations. We focus on analytic results
for an explicit stochastic process, as opposed to simulations or equilibrium defini-
tions, and uncover interesting selection phenomena for finite population size that
do not exist in the infinite limit.
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In Section 2 we introduce a stochastic process for evolutionary game theory in
finite populations. In particular, we use a Moran process with frequency dependent
fitness.Maruyama and Ng{198]), Sasaki(1989, Takehata and Nef1990, Sasaki
(1992 andSlatkin (2000 study the fixation probability under balancing selection
in a finite population.

In Section 3 we define imasion and fixation rates, and compare them to the
benchmarks set by a neutral mutant in order to quantify selection pressure. We first
illustrate the population-size dependency of evolutionary games derived from the
fitness difference of the two strategies. Then we state our main results on selection
dynamics in finite populations. Our key result is that in finite populations, there are
eight selection scenarios, as opposed to three in infinite populations.

In addition to the payoff matrix, the population sizZi, playsa \ital role in
selection dynamics. I8ection 4 we resent examples to show how the selection
dynamics can vary ad changes.

On the other hand, there are games where population size does not affect the
selection dynamics. We give a characterization of those gam8acition 5 We
also show that the singular cage= ¢ > b = d displays positive selection fds
for finite population sizeN, but is entirely neutral for infinite population size.

We give a smmary and discussion of our results3ection 6

In the Appendix, we develop the mathematical machinery for studying evolu-
tionary game theory in finite populations, and prove our results.

2. A FREQUENCY DEPENDENT M ORAN PROCESS

Suppose the population consists Mfindividuals. The number of individuals
using strategyA is given byi, and the finess of individuals using stratedyis

fi=ad —1) +b(N —i).

The number of individuals using stratedy is given byN — i, and the finess of
individuals using strateg# is given by

g =c +d(N—i—1).

Theselection dynamics of the game withplayers can be formulated as a Moran
process oran 1962 with frequency dependent fitness. At each time step, an
individual is chosen for reproduction proportional to its fithess. One identical
offspring is being produced which replaces another randomly chosen individual.
Thus the population size\, is drictly constant. The probability of adding an
A-offspring |sm At each time step, the number Afindividuals can either
increase by one, stay the same or fall by one. Therefore, the transition matrix of
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the Markov process is tri-diagonal and defines a birth—death process. The transition
matrix is given by

o i f N —i
T+ (N=Dg N
p . __(N-Dg 1
YT+ (N=Dg N

Pi=1-PFin1—- PR

all other entries of the transition matrix are O.

The process has two absorbing statess 0 andi = N: if the population has
reached either one of these states, then it will stay there forever. Let us calculate
the probability to be absorbed in one or the other of these two states.

Denote byx; the probability to end up in state= N when starting in state We
have the recursive relation

Xi = PiyaXiy1 + PiXi + BicaXioa

with boundary conditiongg = 0 andxy = 1. The solution is given bitarlin and
Taylor (1975

4
_ 1+ lezlnlizlgf_t
= N—1 1] :

1+ Hlizl%

We are interested in the probability that a singlendividual reaches fixation in
apopulation ofB individuals. This probability is given by

X

1
= N—1 1] :
1+ [Tkes %

PAB = X1

Conversely, the probability that a sing individual reaches fixation in a popula-
tion of A individuals is given by

N—-1 Ok
[Tt % 1

N-1T] o N—1 1 N-1 f"
1+ e ¥ 1+ 200 Ty o

pBA=1—Xn_1 =

Observe that

N-1
PAB fi

PBA

0
i
x
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2.1. Congtant sdlection. The fixation probabilities,oag and pga, can be com-
pared with corresponding probabilities for constant selection and random drift. For
constant selection, i\ has fithness and B has fitness 1, then for al,

1-—
1-—

=l

1-r
1—rN°

and PBA =

PAB =

ﬂ
z|'—‘

An example r constant selection is also given by the game

= >
= =

A
B

For neutral drift, if bothA and B have the same fitness, then for i)

1
PAB = PBA = N

An example $ thegame

A B
All 1
B|1 1

3. SELECTION DYNAMICSIN FINITE POPULATIONS

We can use the probability of fixation of neutral mutantgN] as a bachmark
for studying selection in finite populations. Thus, we can say that ‘selection favors
A replacingB’ if pag > 1/N. In contrast, ‘selection opposes replacingB’ if
pag < 1/N.

Let us @mparef; andg; for eachi in order to evaluate whether selection acts to
increase or reduce the numberAplayers at position. Let

hi = fi — g,

so thath; is a linear function of definedori =1, ..., N — 1. Invasion dynamics
can be characterized by evaluating the sigh,odndhy_;.

If hy > 0 then wesay ‘selection favord\ invading B'. If hy_; < 0 then we say
‘selection favorsB invading A'. These invasion criteria evaluate whether a single
individual of A (or B) has a higher fitness than the resident population.

Notethath; > 0 (orhy_1 > 0) are simple conditions in terms af b, ¢, d and
N, while pag > 1/N (or pga > 1/N) are very complex conditions which cannot
be explicitly solved forN.
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Figure 1. Classification of the game dynamics in $he plane. AsN varies, he cross-
section (circle) for the four sectors of final outcomes of game dynamics moves along the
dotted line& + ¢ = 0. The coordinate for the cross-sectiongs¢) = ((a— d)/N, (d —

a)/N).

The difference in fithess (mean payoff) betweenfastrategist and 8 strategist,
h; = f; — @i, can be expressed as

hi =&1 — (N —1) (2)
with g g
r_ _a' r_ a—
where
E=a-—c, =d-—h. (4)

& and¢ represent respectively the initial disadvantage of strategyd that ofB.

The evolutionary dynamics of the game in the infinite population is classified by

the sign of¢ and¢. In afinite population, the evolutionary outcome is based on
the modified parametets and¢’, such hat the game is

(1) bi-stable if¢’ > 0 and¢’ > 0.

(2) A-dominant if¢’ > 0 and¢’ < 0.
(3) B-dominant if§’ < 0 and¢’ > 0.
(4) Polymorphic if¢” < 0 and¢’ < 0.

This is not just a minor modification of corresponding classification in an infinite

population game (based on the signs aind¢), but rather reveals an interesting
population-size dependence in the evolutionary outcomeHged—asN varies,
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the cross-section (circle) for the four sectors of final outcomes of game dynamics
moves in thet—¢ plane along the dotted line+ ¢ = 0).

Suppose, for example, thatand¢ are in the region below thi-axis and above
the lineé + ¢ = 0(i.e.,¢ < 0 andé 4+ ¢ > 0). Suppose also that > d. Then
there are two threshold population sizes for the evolutionary outcomes:

—d —d
aé and Ny, = a , (N1 < Ny),

N, =
! |

such that theA-dominant systemA is the only stable equilibrium) for sufficiently
large population sizéN > N,) becomes bi-stable (bo#handB are locally stable)
for intermediateN (N; < N < Ny), which is finally replaced by the opposite
global stability of theB-dominant systemE becomes the only stable equilibrium)
for population size smaller thay;. On theother hand, i& > 0,¢ > 0 anda > d,
then there is only one threshold population site= (a — d)/&, and bistability
for sufficiently large population will give a way t8-dominant dynamics if the
population sizeN become smédler thanN;. A differentN-dependence appears if
the sign ofa—d is reversed. Indeed, & > 0,¢ > 0 as befoe butnowa < d, then
bistability for sufficiently large population collapses into Ardominant dynamics
(rather than &-dominant one) iN become smdler thanN,.

The evolutionary dynamics of a two-player game in a finite population is charac-
terized by five parameters: the payoffs and the populationi$jzghich wedenote
by [a, b, c,d]y whereN > 2. As is shown in 8), the condition for that evolu-
tionary game dynamicfa, b, c, d]y to be A-dominant (the strategy enjoys an
advantage oveB for any frequency of) is given by

. —d d—
[a, b, c, d]n: A-dominante—a —c > aT and d—b< a'

For the minimum populatio™N = 2, this condition is equivalent to

. d
[a, b, c, d]>: A-dominant<—b > % > C.

This has a @ar meaning. The ‘spiteful’ strated@lp > c) enjoys an advantage if the
population is small. The ‘spiteful’ strategy acts not only to increase its own payoff
but aso to decrease the payoffs of its opponeitanfilton, 1971). The degree of
this ‘spiteful’ behavior increases as the population size decreases, and hence ‘spite’
is most evident if there are only two players.

Our main esults are as follows:

THEOREM 1. If b > c there exists a population size, Ny > 2, such that for all
N < No,WEha.VE,OBA < 1/N < PAB-
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We will compute Ny in the Appendix The theoem states that for sufficiently
small population size, foA to dominateB in the sense that selection favofs
invading and replacing, but not vice versa, it suffices to havéd > c¢. Note hat
for infinite population sizeA dominatesB if a > c andb > d, regardéss of the
relative magnitudes df andc.

The intuitive proof of the theorem is as follows: if we consider a population of
N = 2 oontaining oneA and oneB player, then the payoffs foA and B are,
respectivelyp andc.

We state the following results, and we will present the proofs inAppendix

THEOREM 2. If hy > 0and hy_1 > 0, then PBA < l/N < PAB-

If selection favorsA invading B, but opposes invading A, thenselection must
favor A replacingB and opposeB replacing A. We can say that, in this case,
A dominatesB. The condition

é./N<§/+§./
g/N > %-/_'_é-/

is equivalent tdh; > 0 andhy_; > 0. This condition implies
E—-¢)N=(@+b—-c—d)N > 2(a—d).

In the limit N — oo we reoveré > 0 (a > ¢) and¢ < 0 (d < b) as necessary

and sufficient conditions foA to dominateB.

THEOREM 3. |f,OAB < 1/N and PBA < 1/N, thenh; < Oand hy_q > 0.

If selection opposes replacingB andB replacingA, then selection must oppose
A invading B and B invading A as well. In this case, selection opposes change.
The condition

%-/N > %-/ + é-/
is equivalent tdh; < 0 andhy_; > 0. This condition implies

{é./N >§/+§./

E+¢c=a—-b—-c+d=>0.
In the limit N — oo, we reoveré > 0 (a > ¢) and¢ > 0 (d > b) as necessary
and sufficient conditions foA and B to be bi-stable.
THEOREM 4. If pag > 1/N and pga > 1/N, thenh; > Oand hy_; < O.

If selection favorsA andB replacing each other, then selection must fa&and
B invading each other as well. We say selection favors change. The condition

é./N<§/+§./
g/N<%-/+é-/
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is equivalent tdh; < 0 andhy_; > 0. This condition implies
E+¢c=a-b-c+d<0.

In the limit N — oo, we reoveré < 0 (a < ¢) and¢ < 0 (d < b) as necessary
and sufficient conditions foA and B to be in stable equilibrium.

3.1. Graphical notation. We usehe notationA< B to mean that selection favors
Alinvading B but opposesA replacingB, andAZ B to mean that selection opposes
B invading A and B replacingA. — and <« indicate the signs of invasion coeffi-
cientsh; andhy_, while = and<« indicate the relative values of fixation coeffi-
cientspag andpga with respect to IN.

There are 1@ombinations of these arrows betwe&mndB, eight of which are
excluded byTheorems 24.

Therefore, we have altogether eight selection scenarios in finite populations. We
list them as well as the corresponding scenarios in the infinite limit.

N < oo N — oo
AZZ B: selection favorsA A—B
AZZ B: selection favors3 A—B
AZ Z B: selection favorsA; selection favors mutual invasion A<«— B
AZ C B: selection favors change A—-<«<B
.5 B: selection favord; selection favors mutual invasion A— B
AZZ B: selection favorsA; selection opposes mutual invasiol — B
AZZ B: selection opposes change A<~— B

AZZ B: selection favorsA; selection opposes mutual invasionrA «— B

4, EXAMPLES

Since the definitions of invasion and fixation criteria depend\prwe see that
population size plays a key role in selection dynamics. Interestingly, for a fixed
payoff matrix, we observe that several selection scenarios can ochuinaseases.

We give some examples of this phenomenon.

ExaMPLE 1. Consider the payoff matrix

A B
A|l31 102
B| 3 1

For infinite population size, the fithess Afis greater than the fithess 8fat all
frequencies. Hence, we say thatlominatesB, A «— B. This also implies thatA
is a strict Nash equilibrium or evolathaily stable stréegy (ESS) whileB is not.
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Figure 2. A | 3.1 102 fixation rate and invasion coefficient as a function of popula-
B| 3 1

tion sizeN.

For finite population size, we observe there are five cases dependgAsiN
increasesA gradually gains its dominance ovBr We note thata+d > b + c,
so selection will not favor change for afy. Alsoa + b > ¢ + d, so for large
population size, selection cannot faudr

We observe fromFig. 2that:

(1) ForN < 21, we haveoas < 1/N < pga andhy, hy_1 < 0. Therefore,
selection favor8. AZZ B.

(2) For 21 < N < 30, we haveoag < 1/N < pga andh; < 0 < hy_z.
Therefore, selection favorB, but opposes mutual invasio< = B.

(3) For 30< N < 50, we haveoag, psa < 1/N andh; < 0 < hy_;. There-
fore, selection opposes chang&._ B.

(4) For 50 < N < 101, we haveoga < 1/N < pag andh; < 0 < hy_s.
Therefore, selection favors, but opposes mutual invasiodZ_ B.

(5) ForN > 102, we haveoga < 1/N < pag andhy, hy_1 > 0. Therefore,
selection favorsA. AZZB. [

ExXAMPLE 2. Consider the payoff matrix
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Figure3. A | 29 18 fixation rate and invasion coefficient as a function of population
B|22 2

sizeN.

For infinite population size, the fithness éfis greater than the fithess &f for
high frequencies oA, the finess ofB is greater than the fithess éffor low fre-
guencies ofA. Herce, we say thaf and B are bi-stable (the unstable equilibrium
is atxa = 2/9), A «<—— B. Both strategies are strict Nash equilibria.

For finite populations, we observe four cases fieig. 3. Note hata + b >
¢+ d—selection will not favorB for largeN; alsoa+d > b+ ¢, soselection will
not favor change for ani.

(1) ForN < 3, we havepag < 1/N < pga andhy, hy_1 < 0. Therefore,
selection favor8. AZ 2 B.

(2) For3< N < 9, we haveoag, pga < 1/N andh; < 0 < hy_;. Therdore,
selection opposes changé;— B.

() For 9 < N < 76, we haveoga < 1/N < pag andh; < 0 < hy_s.
Therefore, selection favora, but opposes mutual invasiohZ_ B.

(4) ForN > 77, we haveoag, pga < 1/N andh; < 0 < hy_;. Therdore,
selection opposes changé;— B.

Note that in this example, we see that there is a range of optimal popu-
lation sizeN where $rategy A reaches fixation better than a neutral mutant.
This observation leads to novel results on the emergency of cooperation in
finite populations llowaket al., 2003. O



Evolutionary Game Dynamics in Finite Populations 1633
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Figure4. A| 1.9 11 fixation rate and invasion coefficient as a function of population
B| 2 1

sizeN.

ExAMPLE 3. Consider the payoff matrix

A B
All1l9 11
Bl 2 1

For infinite population size, the fitness éfis greater than the fitness &f for
low frequencies ofA, but the finess ofB is greater than the fitness & for
high frequencies ofA. Herce, we say thatA and B are in stable equilibrium (at
Xa = 1/2), which also implies that neithek nor B is a strict Nash equilibrium;
A — <« B.

For finite populations, we observe four cases frip. 4. Note hat we have
a+b=c+danda>d,so(@a+b—-c—d)N < 2(a—d)forall N. Therdore,
there cannot be selection férin finite populations. Also note that+ d < b+ c,
so selection cannot oppose change for Bny

(1) ForN < 10, we haveoag < 1/N < pga andhq, hy_1 < 0. Therefore,
selection favor8. AZZ B.

(2) For 10 < N < 29, we haveoag < 1/N < pga andhy_; < 0 < hs.
Therefore, selection favorB, andselection favors mutual invasio= < B.

(3) For30< N < 650, we haveoag, pga > 1/N andhy_; < 0 < hy. There-
fore, selection favors chang@Z Z B. This corresponds to the deterministic
case where the game is polymorphic.
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Figure 5. A | 207 107 fixation rate and invasion coefficient as a function of popula-
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tion sizeN.

(4) ForN > 650, we haveoga < 1/N < pag andhy_; < O < h;. Therdore,
selection favorsA and mutual invasionAZ £ B.

This example shows that for very large population size, a neutral mutant

can fare better than strate@yin this mixed strategy game.

In fact, in the case of Hawk—Dove games whare: ¢ andb > d, our
stochastic analysis shows that for sufficiently large population iz >
cd if and only if pag > 1/N andpga < 1/N. Thereis an intermediate
range of population sizBl for which the game is polymorphic.

EXAMPLE 4. Consider the payoff matrix

| A B
Al207 107
Bl 2 1

For infinite population size, the fithess Afis greater than the fitness Bffor all
frequencies. A dominates ov&®, A <« B, and A is a strict Nash equilibrium or
ewlutionarily stable grategy (ESS) whileB is not.

For finite population size, we only have two cases freig. 5. We note that
a+d=Db+c. Inthis caseh; = hy_1 = (@a—¢)(N — 2) + (b — ¢). Soselection
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favorsAif (a—c)N > 2a — b — ¢, i.e.,, whenN is big; and selection favorB if
(a—c)N < 2a—b—c,i.e,whenN is small.

(1) ForN < 15, we haveoag < 1/N < pga andhq, hy_1 < 0. Therefore,
selection favor8. AZZ B.

(2) ForN > 16, we haveoga < 1/N < pag andhy, hy_1 > 0. Therefore,
selection favorsA. AZZB. [

EXAMPLE 5. Now we consider the payoff matrix

A
B

w w|>
)

For infinite population size, sincg = ¢ andb = d, we have the neutral case
A ——B, where the two strategies are equally good.

For finite populations, we see froffig. 6 only one selection scenario. For
all population sizesN, we have V2N = pag < 1/N < pga = 3/2N and
h1, hn—1 < 0. Therefore, selection favoB for all N. AZZ B.

Notethata+b =c+danda > d,so(a+b—-c—d)N < 2(a— d) for all
N; there cannot be selection fé Sincea + d = b + ¢, selection cannot favor or
oppose change for any.
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This example shows that spite is irrelevant in large populations, but decisive
in small ones. As the population size decreases, the tendency of spitefulness
increases. [

For the game

A B
Als 1
B|s 1
we can calculateoag andpga precisely as irexample 5 They are
. 2 and . 2s
,OAB—(S+1)N PBA—(S+1)N
pas _ 1
PBA S

Npag andNpga are constant in this case. Ak — oo, & — 1 foralli,i.e,the

fithnesses ofA andB are equal at all positions.

5. ADDITIONAL RESULTS

Example 4leads us to the following observation.

OBSERVATION 1. Assume thab # d. If for someN, pag = psa = 1/N, we
haveh; = O for alli. h; = 0 for alli also impliesthaa +d =b + c.

Convesely, ifa+d =b+c andﬁ1 is an integer, then foN = % we have
hi = 0foralli andpag = pga = 1/N.

pas = psa = 1/N for all population sizeN if and only ifa = b = ¢ = d; this

is the case of neutral drift.
We will give the proof in theAppendix Note that one direction follows easily

from the discussion ifexample 4and the formulae fopag and pga. So if the
fithnesses ofA and B are equal at all positions for a particulél, then pag =

psa = 1/N.
For constant selection with payoff matrix
A B
Alr r
Bl1 1

A and B have fithesses and 1 respectively; we see that the fixation probabilities
are

Sl

1- 1-—r
and PBA =

- % 1—rN’

PAB =

[u

We can ask for what constant fithelssvill these fixation probabilities be equal
to that of the game



Evolutionary Game Dynamics in Finite Populations 1637

A B
Als 1
Bls 1
where
= 2 and __>=
PAB—(S+1)N PBA—(S+1)N-
The answer dpends omN.
Assumes > 1. WhenN = 2, we see that = 1/s.
For largeN, we epectr > 1 and
2 1-1 1
= - <1l-—-.
(s+DN 11—+ r

Sinces > 1,@ < 1/N, wesee that - 2 < 1/N, sor < 1+ 1/N. As
N — 00,1 <r < 1+ 1/N. Therdore, asN becomes sufficiently large, the
game becomes equivalent to random duftand B become equally good as in the
infinite case.

We have thedllowing theorem:

THEOREM 5. The selection dynamics of the game

A B
Ala b
Bla b

in finite populations depends on the sign of a — b. \WWe have two cases:

(1) Ifa<b,thenh1>O,hN,1>0andeA:(a+2—§)N <% <,0AB=(aE%.

Sclection favors A; AZZ B.
(2) If a >. b, thenh; < 0, hy_1 < Oand PAB — (a-ﬁg)N < g < pPBA = (aEE)N'
Selection favors B; AZZ B.

Z|=

As N — oo, this game becomes equivalent to random drift, where A and B have
equal fitness.

For generic payoff matrices, we can also find conditions on the entries of the
payoff matrix so that the selection scenario does not chan@fecdmnges.

THEOREM 6. Ifb > c,a > cand b > d, we have for all N, h; > 0Vi and
pea < 1/N < pap. So selection favors A; AZZ B.

Proof. WhenN = 2, f;/g; = b/c. If b > ¢, pga < 1/2 < pag, SOA replaces
B but not vice versa. To have the same selection scenario, wepgank 1/N <
pag forall Nandfi/g1, fn_1/0n_1 > 1. Itis easy to check that it suffices to have
a > candb > d. There are five possibilities:

1D a>b>c>d,
(2)a>b>d=>c,
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() b>a>c>d,
4) b>a>d=>c,
B) b>d>a=>c.

<<
In all these caseA_C B.

By symmetry, we can analyze the cases when selection f&/ors]

6. CONCLUSIONS

We have used a Moran process with frequency dependent selection to study evo-
lutionary game dynamics in finite populations of side We havecalculated the
probability that a single individual using strategycan take over a population con-
sisting ofN — 1 individuals using another stratedy, If this probability is greater
than I/ N then selection favora replacingB. We provide necessary and sufficient
conditions for this to happen. Hence, we have characterized selection dynamics
in finite populations. Interestingly for a fixed payoff matrix, describing the game
between strategiea andB, the selection scenario can change as a function of pop-
ulation sizeN. There are eight such selection scenarios. In the limNof> co
we always find convergence to one of the three generic selection scenarios known
from the deterministic replicator dynamics.

There are many unexpected situations that can arise in finite populations. For
exampe, in a game wher@d dominatesB for large N, it can happen that selection
favors B for small N. Similarly if both A andB are strict Nash equilibria and evo-
lutionarily stable strategieMaynard Smith1982 for the deterministic dynamics
of N — o0, selection might completely favor one strategy over the other for some
finite range ofN.

In a game between two strategies,and B, deterministic selection dynamics
for N — oo are completely characterized by the relative magnitude of the entries
in each column of the payoff matrix, that is by the comparison betveeand c
and the comparison betweénandd. For a population size oN = 2 theonly
relevant comparison is betweerandc. All counterintuitive phenomena of finite
population size dynamic$y, emerge a a corsequence of this tension.

Our conpanion paperKudenberget al., 2003 looks at these issues in a different
but related way. That paper supposes that there is a small probability of ‘mutation’
from one strategy to the other, so that there are no absorbing states, and consid-
ers the limit of the long-run distribution as the probability of mutation goes to 0.
In small populations, this distribution can assign probability close to 1 to a ‘spite-
ful’ but dominated strategy. The paper also characterizes the long-run distribu-
tion as the population becomes infinite, and finds that ‘spite’ becomes unimportant
except in knife-edge cases.

In addition to explaining selection phenomena in small populations not expected
from deterministic analysis, our results in this paper have interesting implications
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for the emergence of cooperatiddowaket al. (2003 shows that a single cooper-
ator using a reciprocal strategy can invade a population of defectors with a proba-
bility that corresponds to a net selection advantage.

For games with more than two strategies, the dynamics become much more com-
plex even in the deterministic model. For example, there can be heteroclinic cycles
if there are three strategies, and for more strategies, there can be limit cycles and
chaos Hofbawer and Sigmund1998 2003. As a first step toward extending our
stochastic model of the frequency dependent Moran process to multi-strategy game
space, we plan to study the dynamics of the rock—paper—scissors game in finite
populations. It would also be interesting to find conditions on the payoff matrix of
ann-strategy game where a dominant strategy would emerge in finite populations.
We plan topursue these questions in our future work.

APPENDI X

Proof of Theorem 1. b > cimplies thatpoga < 1/N < pag WhenN = 2.
For selection to favoA for all N < N, we Want = Cfg“(‘Nl)z) > landg=t fN L

AR > L. Itsuffices thatN(@a—c¢) > 2a—b— candN(b d) > b+ c 2d.

There are four cases.

(1) a > ¢,b > d: sinceb > c, we cleck thatf,/g; and fy_1/gn_1 are both
greater than 1 for alN, sopga < 1/N < pag forall N. Ng = oo

(2) a<c,b>d:N(@—c) > 2a—b—cisequivalent taN < 2-2=¢ — N,

() a>c,b<d:N(b-d) >b+c—2dis equivalent taN < bfbc—Zd = No.

(4 a<cb<dNa-c>2a—b—-—candN(b —-d) >b+c—2dis

equivalent toN < min (222=¢ bte=ad) — N,

SowhenN < Np, f1/91, fN—l/gN—l > 1, and thUSDBA< 1/N < PAB; AZZ B;
selection favorsA.
A similar proposition holds in the case< c. O

We now pove our main redts. To make the argument and analysis more trans-
parent, we will first make a change of basis. Instead of working with the payoff
matrix ("g‘ 3) directly, we will work with ('g‘ 3) instead, where

a=(N—-2a+b= fy_1 b=(N-21b= f;
c=(N—-Dc=9gn_1 d=c+ (N-2d=aq.
Let M = N — 2 anddefine

fin  ia+ (M —i)b
g1 ic+(M—ixd

o =

fori =0,..., M.
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It is easy to check that the differeneg — «;_; has the same sign asl — bc.
Hence, we have

LEMMA Al. Thesequence«; monotoneincreaseswithrespecttoi ifad—bc > 0,
and monotone decreasesif ad — bc < 0.

The following equivalences are easy to verify.

e fi andg; are positive for all < a, b, candd are all positive.
eh 1>08a >1Lh 1 <0&0¢ <landhj; =0« o =1.

Define st functionsg(x) andy (x), wherefor x € [i,i + 1]:

M i
B = ] @oroo=]]at
k=0

k=M —i
Since
1
pAB = M - 1
1+ Zj:o“lﬁ:o“k
and
1
PBA

= M M ’
1+ o lij o

oBa @ndpag can be expressed in terms of the areas under the fungti@amsl y
respectively. That s,

M N—1
1/PAB—1=ZH0!kl=/ y (X) dx

j=0 k=0 0

and

M M N—1
1/,OBA—1=ZHO!k=/O B(x) dx.

j=0 k=]

Wewill show that there are eight selection scenaribiseorems 24 follow easily
from the following classification.

(1) g, am > 1: sinceh; is linear ini, all h; are positive; hence all; > 1. One
can check immediately thaga < 1/N < pag. Wesay that selection favors
A, AZZ B. This implies Theorem 2

=
(2) ag, am < 1: again theh; are all negativey; < 1Vi andpas < 1/N < pga.
We say that selection favo®; AZ = B.
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(3) g < 1 anday > 1: sincexg = b/d anday = a/c, we havead > bc. By

(4)

Lemma AJ the sguencey; is monotone increasing, i.e.,

<1 <-- <ok 1<l<ag<---<am.

: : : b+c—2d+N(d—b) a—d+N(d—b)
k is the unique mtegerwhetee( A b-c ° atd-b_c )

We see tha3(x) is a convex function that startsaf, > 1, and concaves
down toagas - - - aym. B(X) is greatest wher € [M — k, M — k + 1].

¥ (X) is a convex function that starts atay > 1, and concaves down to
1/agay - - - ay. y(X) is greatest wher € [k — 1, K].

Looking at the3(x) andy (x), and themtegralstN_1 B(X)dx = 1/ppa—
1 andfON_1 y(xX)dx = 1/pag — 1, we see thapag and pga cannot both
be greater than/IN: pag > 1/N implies thathN_ly(x) dx < N — 1.
Sinceag < 1,1/ap;---am < 1 musthold. Therefore,3(x) is a con-
cave down function that starts @t, > 1, and ends atoa1---apy > 1, SO
fON_lﬂ(x) dx > N — 1, henceoga < 1/N.
There are three cases here:

(@) pea < 1/N < pag: selection favorsA but opposes mutual invasion;

AZZB.
(b) pBaA, paB < 1/N: selection opposes changdZ_ B. This implies
Theorem 3
(c) pas < 1/N < ppa: selection favorsB but opposes mutual invasion;
ASZB.

ag > 1 anday < 1: Lemma Alimplies thatx (X) is @ monotone decreasing
function, and both8(x) andy (x) are concave functions. Similar analysis
shows that there are again three cases:

(@) pea < 1/N < pag: selection favorsA and mutual invasionAZ £ B.

(b) pga, pas > 1/N: selection favors changeAZ = B. This implies

N e
Theorem 4
(c) pas < 1/N < pga: selection favord8 and mutual invasionAZ < B.

As N varies,ag, am andag - - - ay can each change their values with respect to 1,
thus varying the selection dynamics.

For the payoff matrix irExample 1 we plots andy for a range of population
sizeN: N = 20, 40, 60, 80, 100 inFig. 7. We see thatxg - - - oy increases from
less than 1 to greater than Jag and pga change their values in relation to 1
accordingly.

Proof of Observation 1. pag = pga = 1/N implies that

_:aoal...aM :1



1642 C. Taylor et al

N=20,40,60,80,100

0 10 20 30 40 50 60 70 80 90 100

(0]

% 10 20 30 40 5 6 70 80 90 100

A B
Figure 7. A | 3.1 102 the shae of8 andy as a function of population size.
B| 3 1

Supposexg = 1 andh; = 0. Sinceh; is a linear function in, h; are either all
positive, all negative orall 0 fdr= 2, ..., N — 1. Supposéy_; > O; theng; > 1
fori =1,..., M. Herceagay - --am > 1 musthold. This is in contradiction to
the hypothesis thaiag = pga. Similarly, hy_1 < 0 cannot hold. Hencey; = 0
musthold for alli; i.e., A andB have the same fitness.

Now supposexy < 1; thenay > 1 musthold, asegay---apy = 1. a9 < 1
implies thatb < d, anday > 1 impliesa > ¢. Thus,ad > bc. «; is monotone
increasing byremma Al

Thusg is a convex function that starts afy > 1 and exds atogey ---ay = 1
by assumption g first increases, and then decreases, and it is concave down. So
the area undef between 0 andN — 1 must be geater tharN — 1. But

N—-1
| poodx=vpea-1=N-1
0

by hypothesis. We have a contradiction again. Theretaye; 1 cannot hold.
Similarly, ap > 1 cannot hold.

We see finally thaty; = ;—ﬁ = 1for alli, so A and B have the same fitness at
all positions.
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From the defiitions of f;, g and the fact that; = 1 for all i, we can derive
algebraically that

a+d=Db+ec, N —-b)=d—a.

In particular, ifN(d —b) =d —aforall N,thena=b=c=d. O
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