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Using both analytic and numerical methods, we elucidate the dynamical properties of a class of
metapopulation models in which many different species/strains contend for persistence, with local
extinction of subpopulations being balanced by colonization of other patches. The species/strains have
a strict competitive hierarchy with a given species/strain “taking over” any patch occupied by a
lower-ranking species/strain; compelitively inferior species/strains compensate by having higher colo-
nization rates and/or lower patch death rates. New species/strains keep appearing, so that we can follow
the evolution of the system, Such models may be metaphors for multispecies metapopulations, or for
the evolution of virulence (where the patches are hosts, who are infected with various strains of a
pathogen, and then die or recover at strain-dependent ratcs).

Our emphasis is on a set of questions relating to the evolution of diversity. How many species/strains
are present after a long time, 17 Asymptotically, this number continues to increase very siowly, as In 1.
What are the relative abundances of the species/strains? Under a broad range of assumptions about
the mutations which produce new species/strains, the rank-abundance distribution is roughly geometric
{as is commonly observed in early succession and other “ecologically one-dimensional” situations);
some of our analysis here is based in part on an interesting but unproved mathematical conjecture about
a new kind of probabilisticjcombinatorial problem. If the number of patches/hosts is permanently
reduced—by habitat destruction or vaccination—what happens? Characteristicaliy, there is an initial
sharp loss of species/strains (with selective removal of the competitive dominants), with subsequent slow
Trecovery as new mutants continue to partition the now-diminished *'niche space” (but the pristine levels

of virulence are not regained).

1. Introduction

Recently we have developed a model (Nowak & May,
1994) which enables us to explore the evolution of
virulence in host-parasite associations, in those situ-
ations where superinfection can occur. Most of the
rising tide of publications on the evolution of viru-
lence is restricted to circumstances in which individual
hosts can be infected with only one strain, so that,
overall, the strain with the highest intrinsic reproduc-
tive rate, R,, will eventually exclude all others; the
emphasis is then on the constraining relations be-
tween virulence (which we define as mortality due to
infection) and transmissibility, and on the consequent
implications for long-term patterns in the evolution of

0022-5193/94/ 170095 + 20 $08.00/0

95

virulence. But things are clearly more complicated if
many different strains—with different virulences and
transmissibilities—can “co-infect” a single host. Su-
perinfection represents an intermediate fevel of com-
plexity: here a more virulent strain of infection can
“take over” a host that is already infected with a less
virulent strain, but the host will, in effect, harbour
only one strain of infection at any one time, Thus
superinfection models go beyond single infection ones
in allowing for intra-host competition among strains,
but they stop short of the full complexity of co-infec-
tion by assuming a form of competitive dominance
hierarchy among strains within hosts. We plan a more
comprehensive study of general models of co-infec-
tion {Nowak & May, in preparation).
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Bremermann & Pickering (1983) looked at compe-
tition among parasite strains within a host, conclud-
ing that selection will always favour the most virulent
strain. Levin & Pimentel (1981) studied superinfection
in a two-strain model, finding conditions under which
co-gxistence was possible. Anderson & May (1986)
extended the analysis of this two-strain model, with
explicit attention to the results of invasion of a
pathogen—host system by a more virulent strain
capable of superinfection; these authors also dis-
cussed the history of Dutch elm disease (the fungus
Ceratocystis ulmi) in the UK, and of myxoma virus
among Australian rabbits, in the light of their model.
Nowak & May {(1994) used analytic methods coupled
with extensive numerical simulations to examine su-
perinfection in models with an arbitranly large num-
ber of strains, and also with new strains continually
appearing by mutation. They concluded, broadly,
that the effects of superinfection are: (i) an increase
in the average level of virulence {(above that which
maximises Ry; the strain with the highest R, may even
become extinct); (it) polymorphism of parasite strains,
with many different levels of virulence, within a
well-defined range; (iii) possible maintenance of
strains with levels of virulence so high that they could
not persist alone in an otherwise uninfected host
population (i.e. strains with Ry < 1}; and (iv) very
complicated dynamics, possibly including heteroclinic
cycles and sudden large changes in the average level
of virulence. The focus of all this earlier work is on
patterns in the evolution of virulence. For a more full
discussion and review, see Nowak & May (1994).

Independently, Tilman (1994) has studied the dy-
namics of multispecies metapopulation models, in
which there is a hierarchy of competitive dominance
among the species. Such metapopulation models con-
sider species whose overall populations persist by
virtue of a shifting balance of local extinctions and
recolonizations of subpopulations among a large
number of habitat patches. Tilman’s work builds on
Hastings’ (1980) and Nee & May’s (1992) examin-
ations of a two-species such metapopulation model, in
which the competitively dominant species always
“took over” any patch in which both species oc-
curred, but where the inferior competitor had a
compensating advantage of a larger colonization rate
and/or a lower patch death-rate.

Nee & May (1992) were interested in the effects of
destroying some fraction of the original number of
patches, and they showed that such “‘habitat destruc-
tion™ favoured the inferior competitor, whose overall
abundance could even be increased by weak-to-
intermediate levels of disturbance. Tilman (1994) has
extended this analysis to multispecies situations, ex-

ploring how total species numbers and relative abun-
dances are influenced by patch removal. Tilman also
has made the important observation that there are, in
effect, “limits to similarity” among species who co-
exist in such multispecies metapopulations: a species
can invade and persist only if its colonization and
patch death rates lie in a narrowly defined range,
determined by its place in the hierarchy of competitive
dominance and by the parameters characterizing the
other species in the ensemble. We also refer to Metz
& Dieckman {1986) for models on metapopulations.

Our earlier work (Nowak & May, 1994) and
Timan’s (1994) multispecies metapopulation models
have an identical mathematical structure. This is not
surprising. Like Tilman’s metapopulation models, the
superinfection models are derived from simplifying
more general “co-infection” models, by assuming a
strict hierarchy of competitive dominance (measured
by ability to “take over” a host or patch). In the
superinfection models we have many different strains
of infection, which occupy or infect different hosts;
hosts die (at rates which combine a background rate
with infection-specific effects), and newly infected
hosts are produced at rates which depend on the
transmission efficiency of the infection in an infected
host. Each aspect has its analogue in the multispecies
metapopulation models, where many species are dis-
tributed among habitat patches, which revert to
emptiness (at rates which depend on background
effects and possibly on species-specific effects), and
which send out new colonizers at rates which differ
from species to species. Against these structural and
formal equivalences, there are differences of detail
which derive from differences in biological details and
emphases. Our superinfection models tend to empha-
size differences in virulence (i.e. disease-induced host
death rate); for simplicity, we often assume that
all strains are equally transmissible (Nowak & May,
1994). In contrast, Tilman’s {1994) metapopulation
studies tend to emphasize differences in colonizing
ability (with the inferior competitors having higher
“transmission rates™); for simplicity, Tilman often
assumes a constant patch-death rate, independent of
which species occupies the patch.

In the present paper, we extend our earlier analysis
of superinfection, and also explicitly relate it to
multispecies metapopulation models. The emphasis in
Nowak & May (1994) was mainly on the evolution of
virulence. In the present paper, our emphasis is more
on a set of questions related to the evolution of
diversity. Regardless of whether the mathematical
models are oriented towards superinfection or
towards metapopulations, we ask questions such as:
How many strains/species are present? How does this
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number change, over time, as new mutations arise?
What are the relative abundances of the strains/
species? If the total number of hosts/patches is re-
duced-—~by vaccination or by habitat destruction—
what are the likely consequences? As before, we
elucidate the dynamical behaviour of our mathemati-
cal models by a combination of numerical simul-
ations and analytic results for representative special
cases.

Specifically, the paper is organized as follows. In
Section 2, we set out the basic set of equations for the
dynamics of our r-speci¢s system. Section 3 gives an
explicit and general solution for the equilibrium abun-
dances of the n-strains/species, for the interesting
special case where the supennfection coefficient is
unity (s = 1). In particular, explicit expressions for
the equilibrium abundances, y;, are given for the
limiting cases when all strains/species have the same
transmission or colonization coeflicient (case I,
b;= b = constant), and when all have the same viru-
lence or paich death rate (case II, v, = v, = constant),
Section 4 widens the discussion, to investigate new
strains/species arising by mutation or otherwise, and
consequently to study the average abundance of any
one strain/species, y(z), as a function of virulence, ¢
{or other relevant parameters); the average number of
strains/species, p{v) dv, between v and » + dr; and the
average total abundance of all strains/species in the
neighbourhood of v, x(v) = y(v)p(¥). In Section 5, we
give explicit expressions for the average total abun-
dance, x (v}, for the interesting limiting cases [ and 11
(defined above and in Section 3). Section 6 derives a
general analytic expression for the asymptotic (7 > 1)
density of strains/species, p(v), as a function of the
probability that a new mutant strain/species will
appear at v; this expression is partly based on a
plausible, but unproven, conjecture about the dynam-
ics of these systems (specifically, about the probability
that invasion by a new strain at ¢ will lead to
extinction of an already-existing strain at v*). Specific
cxpressions are then given for interesting special cases
{e.g. new mutants appearing uniformly randomly
along the v-axis). By integrating p(v), we can calcu-
late the total number of strains/species, and from the
relation x(¢) = y(v)p(r) we can calculate the average
abundances of individual strains, y(¢), once x(v) and
p(v) are known (Section 7). Section 8§ compares these
analytic results for x{v), p(v) and y(r) with extensive
numerical simulations, for both cases I and II, and
for various assumptions about the probability distri-
bution of new mutant strains/species.

Focusing more on the biological implications of the
resuits, Section 9 discusses briefly the kinds of pat-
terns of species’ relative abundance that are implied

by the results of Sections 6, 7 and 8. Section 10
assumes that new strains/species continue to appear,
at some uniform rate, and investigates the number of
species, n(t), expected to be found in total in these
systems, after time  has elapsed (remember, not all
mutants will establish themselves, and those that do
will cause some “reshuffling” and loss of existing
species). Section 11 studies the effects of vaccination
{which effectively reduces the total number of hosts)
or habitat destruction (which reduces the total num-
ber of available patches). Finally, Section 12 summar-
izes the main conclusions.

Throughout, the emphasis in the present paper is
on mathematical results. We plan a shorter and more
biologically oriented review and discussion of the
main conclusions, directed toward a broader audience
{May, R. M., Nowak, M. A. and Tilman, D, in
preparation).

2. The Basic Superinfection or Metapopulation Model

As set out by Nowak & May [1994: eqn (9)], and
in different notation by Tilman (1994}, our basic
model is

d}'; i—1 n
d_ =yi|:bi.y0 —u—r,+sb, Z ¥,—3 z bjyj]' (n
! j=1 jeitl
Here y, is the proportion of hosts infected with the
strain labelled i, or, equivalently, is the fraction of all
patches which contain species (i =1,2,3,...,n).
Uninfected hosts or empty patches constitute a frac-
tion y,. We assume the total number of hosts or
patches, K, is a fixed constant, so that X/_, y,=1. The
parameter b, represents the transmission efficiency of
strain/species {, so that—assuming homogeneous mix-
ing among the ensemble of hosts or patches—the
probability (per unit time) that an empty patch will be
colonized by species { is proportional to b; and to the
fraction of patches occupied by i (and thus preducing
colonizing propagules), y;: hence the net rate at which
new infections with strain/species i appear is &y, y,.
By the same token, new infections with species i
appear by superinfection at a rate shy,Z/Z]y,, as
encounters arise at a rate ,y, with hosts infected by
strains/species lower in the dominance hierarchy (y;
with j < /). The “superinfection coefficient”, s, de-
scribes the relative probability of superinfection aris-
ing, compared with the infection of uninfected hosts
(see Nowak & May, 1994, for fuller discussion). For
example, if 5 =1 then superinfection of an already
infected host occurs at the same rate (with the same
probability) as infecting an uninfected host. If s < 1
then superinfection is stower. If s = 0 then superinfec-
tion is impossible. If ¢ > 1 then already infected hosts
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will acquire a second infection more easily. The term
—spi Z7_; ¢ b;y; represents the rate of loss of hosts
infected with strain ¢, as a result of superinfection by
“competitively superior” strains, j > i. Finally, v, rep-
resents the “virulence”, or host/patch death rate as a
result of infection/occupancy by strain/species 7; u is
the death rate from all other causes.

Nowak & May (1994) give an extended discussion
of eqn (1) for general values of s, combining analytic
results with numerical studies of particular s-values.
To keep things managable, in this paper we hencefor-
ward put s =1. That i1s, we have a hierarchy of
competitively dominant strains/species, such that a
strain/species “‘takes over” a host/patch occupied
by an inferior “strain/species” exactly as if that
host/patch were uninfected/empty. Furthermore,
from now on we will write “species”, whether re-
fering to an infecting strain or a metapopulation
species,

Putting s =1 in eqn (1), and using Z}_,y,=1 to
write yo=1—ZX7_,y;, we can re-express eqn (1) as

dv.
—“"f=y,-[(b,-—u —0)—by

dr Z yj(bi'l'bj)]' (2

J=it1

This is our basic equation.

3. Equilibrium Solutions of the Basic Model

Equilibrium solutions of egn (2) are found by
putting dy,/dt =0, for all i. These equilibrium sol-
utions, y¥, are clearly [see alse Tilman (1994)]

YE=1—@+u)b— Y yrU+B/bD )

j=i+d
if y* >0, and
y¥=0, 4

otherwise.

In Nowak & May (1994), we gave a rigorous and
general proof (valid for all 5, not just s = 1) that eqns
(3) and (4) give a unique, stable equilibrium solution
to the system of equations {2), in the special case
where all b, are equal, b, = b = constant, More gener-
ally, for arbitrary b,, eqns (3) and (4) can be seen still
to represent the unique, stable solution to egns (2) in
the particular case s = 1, to which our attention is
restricted in the present paper. This result is estab-
lished by noting that all the sub-diagonal elements of
the matrix 4 defined by equation (11) in Nowak &
May (1994) arc zero when s = 1. In the general case
when s # 1, we have no such proof of stability and
uniqueness, and the dynamics can indeed be quite
wild (see Nowak & May, 1994 for further discussion).

In eqn (3), notice that there are no solutions for
v;> b, —u. Let i = n represent the first (i.e. largest) v,
with v; < b, — u. Then

,V:T =1 _(H + Dn)/bn' (5)

It is now straightforward to compute successive val-
ues of y in terms of the {y*} lying above them on
the v-axis. It is, however, useful to get a more explicit
solution, as follows. Define

S.= 3o ©

and

J. = Z yrb,. (N
i=k

Equation {3) can now be rewritten as
byE=0,—bS,—Jis 1. &)
Here, for notational convenience, we have defined
o;=b,—u—u. (9)
By analogy with eqn (8), we could also write
b_iyt =a_,—b_ S —J. (10)
Subtracting eqn (10) from eqn (8) we have
byt —b,_yt =0—0,_,
=65, +b_,5+byF. (11)
Rearranging this eqn (11), we end up with
b_\Si_1 =58, =0,_, —0. (12)

This is an explicit equation, which gives S,—and
thence y*—by trivial iteration.

Before proceeding to focus on the special cases
when b; = constant (case I) and v, = constant (case II),
we make two further simplifications in our notation.
First, since all of what follows is focused on equi-
librium, we henceforth omit the asterisks: y, means the
equilibrium solution (»* above). Second, and without
loss of generality, we put u =0.

3.1. CASE I! EQUAL COLONIZING ABILITY

This limiting case, b, = & = constant, for all i, was
used by Nowak & May (1994). In the superinfection
models, it corresponds to all species being equally
transmissible; the competitively dominant strains are
more virulent (v, increases as I increases), but ail have
the same b;-value. In a metapopulation context, this
is a less reasonable limit; it corresponds to all species
being equally mobile (so that the inferior competitiors
must compensate by, on average, having their patches
“live longer™).
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If all b, are the same, we can without loss of
generality put #,= 1, and eqn (12) reduces to

yj'}'y,-_]:U,-—viw. (13)

This can be seen to be equivalent to Tilman’s (1994)
equation (12). Alternatively, we define

dv,=p,—v, |,

(14)

10 write

(15)

We see that a newly arising mutant species, with a
virulence v, _,, will find it impossible to establish itself
if Av,<y;. That is, invasion and establishment is
possible only if the “virulence gap”, Av,, between the
new species and the existing once above it in the
“virulence spectrum™ or v-axis is big enough, Av, > y,.
This echos Tilman’s (1994} theme of “limiting simi-
larity”.

Equation (15) is the algebraic form of the illuminat-
ing geometrical construction for equilibrinm abun-
dances, {,}, illustrated in Fig. 1. This figure again
makes it clear that new species cannot establish
themselves unless Ay, is sufficiently large (in relation

to v,).

Yioy=dAv,— y,.

3.2. CASE Il EQUAL DEATH RATES
This limiting case, v; = v, = constant, for all i, was
used by Tilman (1994). In his multispecies metapopu-

{a) T

£ #
\ I‘ L 1 \
0.2 4 0-6 0

0 -8 1.0

FiG. I. A simple geometric method is itlustrated for constructing ¢
the equilibrium configuration, eqns {3) and (4), for the special case
I, when all strains/species have the same dispersal ability
[b; = constant = [; see eqn (15)]. (a) The starting configuration of
eight species is shown, located at specific places on the v-axis
(0 <» <I). (b) The equilibrium configuration, is found by con-
structing a (dashed) line running upwards at 45° to the left from
v =1 until it meets the line projected vertically upwards from the
location of the strain with the highest ¢ value: y, = —¢,. We then
complete the isosceles triangle by projecting a line downwards
toward the left from y,; no species can persist or invade in this
“shadow™ of y, li.e. eqn (15) would give y,_, <0 in this region].
The process is then repeated, as itlustrated, to find the abundances
of the six species which constitute the equilibrium assembly; two of
the initial species [marked with an asterisk in (a)] are eliminated.

lation context, it corresponds 1o the reasonable as-
sumption that all patches have the same probability
of reverting to empty, per unit time, regardless of the
species occupying them; that is, the patch death-rate
is set by external, environmental effects. The inferior
competitors must compensate by being more mobile
(b, decreases as 7 increases). In a superinfection con-
text, this assumption is unattractive: it implies that
all strains affect host lifespan equally, and so the
inferior competitors must compensate by being more
fransmissible.

If all v, =y, = constant, we write eqn {9) for g, as
0, = b,— vy, and the general eqn (12) reduces to

by 1= 511

b [1=8_.7
Notice that the r.h.s. of eqn (15) necessarily exceeds
unity, which again underlines the requirement for &;
to increase as { decreases.

Tilman’s (1994) work makes various assumptions
about the relative abundances of species (i.e. about
{y:}), and then deduces the consequent expressions
for {b,}. Equation (16) facilitates such calculations.
We, however, are more intergsted in assuming values
for the migration/transmission parameters, {b,},
and thence deducing the abundances, {y;}, from eqn
{16).

For an explicit solution of eqn (16), first define

{ - bk+|bk+3bk+5' ' '[lsbn]
T bbby, (1D,

Here, [1, b,] means whichever of | or b, fits the odd
or even sequence in the numerator and denominator
of eqn (17). Notice that we have b, > b, , ,, for all k,
so that {, < 1. With this definition, we can now write
the solution of egn (16):

(16)

(7

if Cf+l>Ci1

otherwise.

=0~

yi=0 (18)

The simplest proof of eqn (18) is by substitution.
From eqn (18), S, =%'_, y,= 1 —{,. Thus the r.hs.
of eqn (16) is {,.,/{;_,. But from the definition
(17), &1/l -1 = b;_, /b, This is the Lh.s. of eqn (16).
QED,

The condition that a newly arising species, with b,,
be able to invade is that {,,, > {;. But, from eqn (17),
&= 1/(B;{; . 1). So the criterion is

b > (LG ) (19

If egn (19) is not satisfied, y, = 0. This result, eqn (19),
can be seen to be equivalent to Tilman's (1994) eqn
(10). This criterion does not have any simple intuitive
interpretation (in contrast with Fig. 1 for case I).
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4. Results About Average Densities and Distributions

So far, we have shown how the equilibrium abun-
dances of the various species, { ;}, can be calculated,
once the spectra of values of v, and b, are specified. In
particular, for case I (constant b;; b, = 1, say), for a
given set of p;-values we can find {y,;} from eqn (15).
Likewise, for case Il (constant u;; v, = v,, say), we can
find {y,} for a given set of b,-values from eqn (18). To
bring case I and case I1 into closer formal correspon-
dence, in case II we define the variable v, =v,/b;.
Then, for both case I and case 11, the set of possible
strains/species are given by a set of v;-values, which
lie along a continuum of possible values, 0 <», < 1.

Suppose, however, that new species are continually
generated by random mutations (or migration, or
other mechanisms), with v;-values in the interval
(0,1). Over time, this will generate some average
distribution of species, along the v;-axis; we will be
interested both in the average number of species, and
in their average abundances, at different places along
the v-axis from v = 0to 2 = 1. These distributions will
depend both on the probability of a mutant appearing
between v and v + du, and on the probability of such
a mutant successfully invading.

{1) We define p(v)dr to be average number of
discrete states, v, between v and v -+ dv.

Note that eqn (14) defined Av,=v,—v;, ,. The
average value of this quantity, which we call 4o,
measures the average spacing between strains/species
around v, = o. It follows that

p(v) = 1/Av. (20)

{i)) We define y(v) as the average abundance of any
one strain/species in the neighbourhood of v, = v, (Ii
would be interesting to know the distribution of
y-values of which y(r) is the mean; for case I, we
guess this distribution is Poisson, but we have no
proof).

(iii) Finally, we define x(v)dv to be the average
total abundance of all the discrete species which have
v; between v and v + do, Clearly,

x(v) = pu)y(v). 21

5. Average Total Abundance, x(r)

5.1. CASE I: EQUAL COLONIZING ABILITIES
OR TRANSMISSIBILITY

Here, eqn (13) gives y;+ y,_, = dv;. On average,
this leads to the relation

2y(v) = Av, (22)
But from eqn (20), 4v = 1/p(v), whence we have:
y(@)p(v)=1/2. (23a)

That is, for case I we have

x(p)=1/2. {23b)

5.2. CASE II: EQUAL PATCH DEATH RATES OR VIRULENCES

This limiting case requires a little more work.
Equation (18) gives us y,={,., —{={) o/l
But, in this form, it is difficult to see if o, < ({,. ;)?, and
so on. Therefore we look at

Yitvior =4 — Lo =Gall — oy ], (24)

Hence, because know that
Vit ¥y >0,
Using average values in eqn {24), we get the

asymptotic expression
Zy)=L{)[dvf]. (25)

And again using eqn (20) to relate dv and p(v), we
arrive at

v Jo <, we

x(v) = {{v)/2v. (26)

It remains to calculate the average value of {(v), in
the limit of many strains (# » 1). From the definition
of £;, eqn (17), we have

Li=Doifvi 1)y 27

{Remember, we are formally writing v, = v, /b, for case
I1.) On average, eqn (27) can be re-expressed as

{{v —24v) = {(@)[1 —(do/v)]. (28)

That is, Taylor-expanding the L.h.s. and cancelling out
the Av factor on both sides,

d@) _Lo)

de v

2 (29)

Integrating, and noting that {({1) =1, we arrive at
@) =3In(). (30)

That is, {(v)==¢'? Substituting inte eqn (26), we
arrive at the result for x(v) in case 1I:

x(v) = 1/(20'2). (31

5.3. COMPARISON WITH CONTINUOQUS LIMITS

It is interesting to compare these results [eqns (23)
and (31)] which are obtained directly from the discrete
set of equations for the individual {y;} [eqn (2)] with
results obtained from a continuous version of eqn (2).

Nowak & May (1994) discuss the continuous limit
of egn (2) in the special case when b, = constant (i.e.
case I). More generally, we have from eqn (2):

dy(v)
de

=y(v)[b(v) —v = J. y(s)p(s)b(v)+b(s) ds).
(32)
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Here, as earlier, # = 0. An equilibrium solution can be
found by putting dy/dt =0, to get

hb{vy—v =jl,t(s)[b(tﬂ)+b(5}] ds. (33

For case I, we put b(v)=1, to get the solution
x{r) = 1/2. This is the solution obtained this way by
Nowak & May (1994), and it is the same as that found
directly from analysing the discrete species distri-
bution, eqn (23), above.

For case II, we have the formal changes of variables
v—-v, and b(v)—u,fv, which changes eqn (33) into

l—v= jl x([1 + (v/s)] ds. (34)

This equation can be seen to have the solution
x(v) = 1/(2v'?). This is the result, eqn (31), derived
above by more direct methods,

By deriving the continuous results in this way, and
comparing them with the appropriate limits from the
fully discrete approach (which are known to be the
uniquely stable solutions), we have established that
these continuous solutions are indeed the (unique)
stable ones. There are no stable solutions, in the
continuous limit, where finite pieces of the r-axis
between vy, and v, have y(¥) =0 and x() = 0. This
retrospectively ties up some loose ends in Section 6 of
Nowak & May (1994).

6. Density of States, p(r)

This section presents heuristic arguments, on the basis
of which we derive a conjectured analytic expression
for p(v) do, the number of species with ¢, (or, for case
I, v,/b, =v;) between v and v + dv.

Our underlying assumption is that new mutant
strains (for superinfection models, as typified by case
I) or new species (for multispecies metapopulation
models, as typified by case ) are continnously ap-
pearing at some uniform rate, i/z, such that t is the
average time interval between the appearance of
successive new mutant strains/species. We assume
that the probability for any one such mutant to
appear with »; between » and v + de is given by the
probability distribution m{r) do, with ¢ in the interval
©,1).

We now outline a general, but approximate, argu-
ment which derives an expression for p(v) in terms of
a quasi-equilibrium between “births™ and “deaths™ of
strains/species. Explicit analytic results are derived in
the limiting cases I and II, for a variety of specific
probability distributions for new mutations as func-
tions of v (namely, m(r) uniform, exponentially de-
clining, and harmonic, for 0 < v < 1). Without loss of

generality, we put T = |, so that time can be equiva-
lently measured in terms of the total number of
mutants, N, which have appeared up to that point.

These heuristic results for p(r) have not been
derived in a fully rigorous manner, as will be seen.
But, as will be shown in Section 8, they agree very well
with extensive numerical simulations. We are encour-
aged to believe our analytic results are indeed correct,
and we hope that some readers will be motivated to
provide rigorous proofs of our conjectured results for
“death rates”, below.

6.1. A “"BORN—OPPENHEIMER QUASI-EQUILIBRIUM
APPROXIMATION

As t — oo, an infinite number of mutations will have
appeared {N — o), and presumably an infinite num-
ber of species will have established themselves.

But at any finite time, we assume the distribution
of species will be in rough equilibrium, appropriate to
the number of species which are established at time ¢,
n{r). As t increases, we expect n(t) also to increase,
but we expect these changes to be slow for very large
f, so that for any given total number of species, n(?),
the density p,(r) will exist as a quasi-equilibrium
(just as electron probability distributions are calcu-
lated at quasi-equilibrium, for specified values of the
slower-changing configurations of atomic nuclei, in
Born-Oppenheimer approximations, and other such
“two time scale’ approximations).

This quasi-equilibrium is set by the balance be-
tween new mutant species appearing and becoming
established (“births™), and the consequent reshufil-
ings and removals as newly established species cause
the y* of eqn (3) to be rearranged, and some existing
species to disappear (“deaths”).

6.2. BIRTHS

We have defined the probability for any one new
species to appear with », between v and » +dv as
w(v)de. But, as the general eqns (3), (4), and the
particular expressions for cases I and 1 [eqn (15) and
Fig. 1, and egns (18) and (19), respectively}, make
plain, a mutant appearing at v;=¢ will not always
invade and establish itself; that is, a new mutant will
not always have dy,{r)/d: > 0 in eqn {2). So we write
¢(v) as the probability that, on average, a new mutant
appearing at v will be established. Thus the “birth
rate”, at which new species appear and establish
themselves with ¢, between v and v + dv, is c(v)a(v) dv
(per unit time, measured with 1 =1).

For case I, we see from Fig. | that a newly
appearing mutant will not persist if it falls within the
leftward “shadow™ of an existing species, but will
succeed otherwise. Thus, on average, ¢(¢) =05 for
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case [, independent of ». Equivalently, for case I we
can see from eqn (15) that the “gaps™ into which new
mutants can invade scale linearly with Av (ie.
v,—v;,_,) along the p-axis, so that the density of
successful invasions is, on average, scaled as [rate of
change of v] = constant. For case IT in the limit of
large n(t), the “gaps™ can be seen, from eqns (18) and
(30), to scale on average as do'”? (i.e. {,—{,_,); there
is, in a sense, relatively more “gap space” for small v
(by virtue of the scaling ©v'?). For case II, the asymp-
totic density of successful invasions is thus, on aver-
age, scaled as [rate of change of v'?]=1v~"? and
c{v) = constant/p '~

6.3, DEATHS

Per unit time, the number of species ‘“dying”
between v and v + dv depends on: (i) the number of
species that are there, p(v) dv; and (ii) the probability
that any successfully-established new species will
cause the disappearance of a strain at v, x(v). We saw
carlier that new introductions affect only species with
lower v-values, and not those with higher v-values
{because stable states are constructed, as discussed in
Section 3 and in Nowak & May 1994, by working
“down from the top™). Therefore x(r) will depend on
successful establishment of new mutants in the inter-
val v <o, < |

We now make a conjecture, which we have not
succeeded in proving. The conjecture is that the
asymptotic probability for any newly-established
species to cause a species with »;=v to disappear,
x(v), is proportional to the integrated probability
of successful invasion anywhere on the p-interval
above v:

1
x(v)=aj “births”. (35)
That is,

k(v)=ua jlc(s)n(s) ds. (36)

Here o is a proportionality constant, a < 1, which
specifically measures the average probability that a
new mutant appearing somewhere in the interval
(v, 1} will extinguish a species at v.

For case [ and with new mutants equally likely to
appear anywhere between v, and v, (that is, a
uniform probability distribution n(v),n(v)=1 on
(0, 1)), we have made direct analytic calculations—
based on Fig. 1—of k(?), looking up to the next 15
or s0 species with ¢; > ¢; this suggests eqn (36} is valid,
with o around 0-10. More generally, the extensive
numerical simulations reported in Section § below,
suggests that eqn (36) is indeed accurate, particularly

for uniform distributions of new mutations (where we
find « =0-114 for both cases I and IT in the limit
n»1)

This being said, eqn (36) remains an unproved
conjecture. We hope others will be motivated to work
on it. Accepting this conjecture, we have that the
average rate at which species are being removed,
between v and v +dv, is p(p)x(v)do.

6.4, QUASI-EQUILIBRIUM APPROXIMATION FOR p(v)

Under the Born—Oppenheimer style of approxi-
mation outlined above, we now estimate the quasi-
equilibrium value of p{v) by setting the rate at which
the new mutants successfully establish themselves at
v equal to the rate at which existing strains are lost.
This birth—death equilibrium is

c@)n(w)=p(wlk(v). (37

Or, using eqn (36) for k(v),
() = cl?(v)fr(v) _
ocJ- c(s)n(s)ds

Because ¢(v) appears in both numerator and denomi-
nator in eqn (38), it is only the functional dependence
of ¢(v) on v that matters. We put ¢{(v) =1 for case 1
(constant b,), and c(v) = v~ for case II (constant v;;
thence v,=v,/b;), as discussed under Section 6.2
above.

Equation (38) can be written by defining g(v) as

(38)

g(¥)= jl c(s)m(s) ds. 39
Then
_ _ld(ng)
p)=—-—1"" (40)

The total number of strains/species with v; < v may
be called /(v). Clearly /(v) = [} p(s) ds, and so, from

eqn (40),
1) =éln(§$—;). (a1

Here g(v) is defined by eqn (39). The overall total
number of strains/species is then n = I(v,,, ); we will
return to this in Section 10,

We conciude Section & by deriving explicit ex-
pressions for p(v) for some particular distributions
n(v), first for case 1 and then for case IL.

6.5. SPECIFIC FORMULAE FOR p(v): CASE 1:
“SUPERINFECTION"
Here, for a constant transmission rate b;, we put

¢(v) = constant throughout (the value of the constant
is immaterial, as it cancels out of our calculations).
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6.5.1. Uniform distribution

If new mutations are equally likely to appear
anywhere on the v-axis, in the interval (0, 1), then
n{v)=1. Consequently g(v)=1—v, and p(v) is
given simply by

p(@) = 1a(l—0)). (42)

6.5.2. Exponential distribution

Here we assume that new mutants are more likely
to arise with relatively small values of v, as described
by an exponential distribution, n{v) =14 e . Here
g(v)=Aile ¥ —e "], and eqn (38) gives

p@)=Afle(1 —exp{—A(1 —v)}}]. (43)

In the limit A =0, we recover the uniform distribution,
and eqn (43) reduces to eqn (42).

6.5.3. Harmonic distribution

For reasons which will be discussed under Section
6.6.3 for case II, below, it is also of interest to ask
what happens if mutants arise with v;-values such that
1/v; is uniformly distributed between 1 and some
maximum value, 1/6 > 1. This gives a harmonic dis-
tribution for =(r) in the interval (4,1), and
c(v)n(v)dv = a dv/v?, where a is a normalization
constant [which cancels out of eqn (38)]. We get
gw)=al(l/v)—1], and

p@) =1/lav(l —2)). (44)

6.6. SPECIFIC FORMULAE FOR p{v). CASE II!
“METAPOPULATIONS”™

For case I, as discussed under Section 6.2 above,
we put ¢(r) proportional to » ~'* (again, the propor-
tionality constant cancels out),

6.6.1. Uniform distribution
For n(v) = 1, we now have g(v) = 2(1 — ¢'?). From
eqn (38), p(r) is
p )= 1/R2ar"*(1 —v'3)]. (45)

6.6.2. Exponentigl distribution
For case I, we have g(}=4{ls e *ds=
(mAY? [erf(A"®) —erf(AY'D)],  with erf(z) =
2n "2 (i exp(—x?) dx. It follows that
p(v) = (lja)(A/mv)'? e *lerf(A'?) — erf (172 ')~
(46)

6.6.3. Harmonic distribution

Remember that case Ii is motivated by the multi-
species metapopulation models, and in particular by
the special case when all patch death-rates are equal

{v;=1r,), but with differing dispersal rates, b,, for
different species. To enable us to keep “v™ as the basic
parameter for this metapopulation “case 11, we
formally defined v; = v, /b,. But this suggests we ought
to consider the case when mutant species arise with
values of b, chosen uniformly on some interval (say,
v, 10 0y /8, with 3 < 1), which corresponds {o a har-
monic distribution for v-values on the interval (3, 1).
As above, we have a{v)dv =adv/v?, and thence
g(®)=(2/3)a(v %> — 1). It follows that p(v) is given
by

p(v) = (3/2a)[p(1 —v¥)]"". (47)

7. Population Abundance of Individual
Strains/Species

In Section 5 we provided exact derivations for the
asymptotic total abundances of all species between v
and v + dv. Specifically, we found x(v) =1/2 [eqn
(23)] for case I, and x(v) = 1/(2v'?) for case II [eqn
(31)]. And in Section 6 we have given heuristic
arguments, leading to explicit expressions for the
asymptotic average number of species between v and
v +do, p(r) dv; see eqns (42}(47).

The average population size or abundance of any
one species, y(v), is now simply given by eqn (21),
repeated for convenience:

ye)=x@)/p). (48)

Thus, for example, if new mutants arise with
v-values that are uniformly distributed along the
v-axis, n{v) = 1, then for case I we have from eqns
(23) and (42)

y(@) = (/)1 - o). (49)

The corresponding expression for case Il is, from egns
(31} and (45),

y@)=a(l —v'?), (50)

and so on.

8. Numerical Simulations

We have also made extensive numerical studies of
eqn (2), starting with a few species (with v,-values
drawn from a specified distribution), and letting one
randomly chosen mutant appear at each time step (i.¢.
constant mutation rate, with the average time be-
tween mutations being 1, with 7 = 1). In effect, we
assume the “reshuffling dynamics™ are very fast com-
pared to new mutants appearing, because we use the
stable equilibrium solutions {eqns (3) and (4)] for
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successive ensembles of species, rather than actually
following the transient dynamics.

Our procedure is thus as follows. At each time step,
a randomly chosen mutant arises (with the v;-values
specified by the probability distribution =(»)).
Equations (3) and (4) tell us whether this new mutant
will persist. If it does, existing species may be extin-
guished, as described by eqns (3} and (4). Time is
measured by the total number of mutants that have
arisen, N(r): t = tN(t). The total number of species
present increases slowly, as discussed in Section 10; at
any one time, we have an ensemble of #n(¢) species,
characterized by their population sizes {y;} and lo-
cations on the v-axis {v;} (for case I, v, measures
virulence or patch death-rate; for case I1, v;is a formal
variable, inversely proportional to transmissibility or
dispersal rate).

Figures 2 and 3 are for case I, with n{(v) = 1. That
is, they correspond to all species/strains having the
same transmissibility, and to new mutants having
virulence, v;, equally likely to have any value between
Vi and v, (normalized to be 0 and 1, respectively),
species with higher or lower v; cannot persist.

Specifically, in Fig. 2 we start with one arbitrarily
chosen species, and let the system run until a total of
10° mutations have arisen. Starting from the time
point when 10* mutations have arisen, we sample this
system at every 100th time step (after every 100 new
mutations). Aggregating all species in bands of v-val-
ues of width 0-005 (i.e. in 200 intervals along the
v-axis) at cach sample point, we compute the average
values of p(v), y(v) and x(v), as defined above. In
Fig. 3 we proceed similarly, but now the system is run
for longer, until a total of 10" mutations have arisen.

In both Fig. 2 and 3, the dashed lines correspond
to the theoretical results: eqn (23) for x(v), eqn (42)
for p(v), and eqn (49) for ¥(v). The phenomenological
parameter « is estimated from the numerical results
for v{v) as a function of v, and this value of « is then
used to plot the theoretical curve for p(v). Theory and
numerical results are in excellent agreement. This is
not surprising for x(v), where our theoretical result,
x{v) = 1/2, is asymptotically exact. But the theoretical
curves for y(v) and p(v) rest on the heuristic argu-
ments about “death rates™ in Section 6.3, and we are
surprised that the agreement with numerical results is
80 good.

We have shown results for both N =10° (Fig. 2)
and N =10 (Fig. 3), to give some idea how
the stochastic fluctuations depend on the size of
the sample, and thence on how long the system is
run.

Figure 4 is for case II, again with the uniform
distribution of mutants along the v-axis, n{v)=1.In
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FiG. 2. Theoretical (dashed curves) and numerical {solid curves)
results are shown for (a) the average number of strains/species,
p(v); {b) the average abundance of individual strains/species, y(v);
and (c) the total abundance, x (v}, respectively, as functions of the
variable v which is a measure of virulence, or an inverse measure
of dispersal ability). Specifically, these numerical results are ob-
tained by running the system of eqn (2) until a total of 10° mutants
have appeared (¥ = 10°), with v-values uniformly distributed along
the v-axis and with all strains/species having the same dispersal
values (i.e. case I with a{p} = 1); this corresponds to the “superin-
fection” metaphor. After 10* mutants have appeared, the system is
sampled at time intervals corresponding to 100 mutations, and the
average values of p(v), ¥(v), and x(p) are computed for each of 200
intervals along the v-axis, spaced 0-005 apart. The theoretical
curves come from eqns (42), (49) and (23), respectively. The
agreement between the asymptotic theoretical results and the
stochastic numerical simulations is good: for y(v), the theoretical
parameter o of eqn (36) is set at & = 01159 by fitting the numerical
results; (a) and {c} for p and x, respectively, then have no adjustable
parameters.

these figures, we have used the intuitive shorthand of
calling case I “superinfection”, and case II “metapop-
ulation”, to reflect the underlying motivation dis-
cussed in Section 3. In Fig. 4, the numerical results are
obtained cxactly along the lines followed for Fig. 3,
with again N = 107. We display x(v), y(v) and p(v)
as functions of »'2, rather than », to facilitate com-
parison with the theoretical resulis in egns (31), (50)
and (45), respectively,

Although the theoretical expressions for x(v), y(v)
and p(v) in the “metapopulation™ case II are very
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FiG. 3. Exactly as for Fig. 2, except now the sysiem in this
superinfection metaphor is run until 10" mutants (¥) have ap-
peared. Again, the numerical results are obtained by sampling the
system at time intervals spaced 100 mutations apart, beginning at
the point when 10* mutants have appeared, and averaging. The
agreement between asymptotic theoretical results and numerical
simulations is even better than in Fig. 2, because the stochastic
fluctuations are now less noticeable (being reduced by roughly a
factor [0, as the number of mutations has increased by a factor 100,
compared with Fig. 2). Here & =0.1147,

different from those for the “superinfection™ case I,
theory and numerical results are again in excellent
agreement. As before, this may be expected for our
asymptotically exact eqn (31), x(v) = 1/(20'?), but the
agreement with the heuristically based formulae for
¥(v) and p(v) is remarkable. Even more remarkable
is the fact that, for the uniform mutant distribution
(n{(v) = 1), case I and case II give the same value for
the phenomenological parameter a: o =0-115 from
Fig. 3 and a =0-113 from Fig. 4.

For the other mutant distributions, such as the
exponential and harmonic distributions discussed in
Section 6, the agreement between theory and numeri-
cal simutations is well within the limits of the numeri-
cal fluctuations, and thus looks good, if the system is
run up to N = 10° or so, as in Fig. 2. But, as shown
in Figs 5-8, if the system is run long enough for most
of the fluctuations to be smoothed out, N =107 or

more, the agreement is not as good as it ts for the
uniform mutant distribution.

Explicitly, Figs 5 and 6 are for the exponential
distribution of mutant v-values, for the *‘superinfec-
tion” case I and the “metapopulation” case 1I, re-
spectively [hence eqns (43) and (46) for p(v),
respectively]. Figures 7 and 8 are likewise for the
harmonic distribution of mutant v-values for cases I
and II [eqns (44) and (47) for p(v)), respectively. In
all four cases, the agreement between theoretical and
numerical results is not bad—and it is excellent
for x(v)}—but not as good as in Figs 3 and 4, As in
Fig. 4, the horizontal axis in Figs 6 and § is scaled as
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FiG. 4. The numerical results here are obtained exactly as in Fig.
3, by running the system until 10" mutations have appeared. The
mutation distribution is again uniform along the »-axis (n{z) = 1),
but now we assume the “multispecies metapopulation” metaphor
of case II {all species have equal virulence or patch death rates, but
different transmissibility or dispersal ability; v is defined formally
as v = py/b,). The asymptotic theoretical expressions for p(v), y(v)
and x(v) are here given by egns (45), {50) and (31), respectively. The
one parameter is determined by fitting the theoretical expression for
y(r) to the numerical results {x =0.1127), so that the top and
bottom figures have no adjustable parameters. Notice that the
horizontal axis has been rescaled to be »'? (not v), as suggested by
the theoretical results, eqns (45), (50) and (31). This has the
consequence of effectively expanding the v-axis around the origin,
so that the stochastic effects seem larger; for very small values of
v'?, we have essentially no strains/species. Overall, the agreement
between theoretical and numerical results is again exceilent, as in
the different case illustrated by Fig. 3.
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F1G. 5. As for Fig. 3 for “superinfection”, case I, but now with
the mutation distribution being exponential (n{vr) =4 e *, with
2 =5 in this example); as in Fig. 3, the system is run until 107
mutations have appeared. The asymptotic theoretical results for
p{®) [eqn (43)], y(v) [from eqn (48)] and x(v)} [eqn (23)] are
indicated by dashed lines. The phenomenological parameter « is
estimated by fitting the theoretical expression for y(v) to the
numerical results (¢ = 0.1836); the comparisons for p(r) and x(v)
thus contain no adjustable parameters. Because fewer mutations
appear for larger v-values with an exponential distribution, the
results are more noisy as v— 1. As discussed more fully in the text,
the agreement between theoretical and numerical results is not bad,
but not as good as in Figs 2-4.

p'?, rather than v, to facilitate comparison with the
theoretical results; this means the leftwards parts of
Figs 6 and 8 are “stretched” relative to Figs 5 and 7,
which should be kept in mind when comparing them.
In all cases, the parameter « is estimated from the
fit between theory and numerical results for y(z)
versus b, so that the theoretical curves for p(v) have
no free parameters. In summary, these extensive
numerical results suggest that our asymptotic analytic
results are reasonably reliable, especially when the
distribution of mutant ¢-values is uniform.

9. Relative Abundances of Species

Having established the dynamical properties of
these models for superinfection or multispecies meta-

populations, and their evolution over time, we now
turn to sketch the implications for species relative
abundance (SRA), for total species numbers over
time, and for the effects of reducing the number of
hosts or patches.

In Tilman’s (1994) studies of these systems, an
equilibrium distribution of SRA—which was geo-
metric or uniform—was assumed and then the under-
lying distribution of dispersal/transmission rates,
{b,}, which would give such an SRA ({assuming
constant patch death rates, v; = v;) was deduced.

Here, we deduce the SRA from the basic set of eqns
{2), under specified assumptions about the distri-
butions of values of »; and b, of the continually
appearing mutations. Specifically, for the quasi-equi-
librium situation described in Section 6.1, we have
information about members of species and about
their abundances, as functions of v, contained in p(v)
and y(v), respectively. From this, we can construct
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FiG. 6. As for Fig. 5, but now for the ‘“metapopulation™
metaphor, case II (again with an exponential distribution of
mutations and 4 = 5). The theoretical estimates for p(v) [eqn (46)],
y(v) {from eqn (48)] and x(v) [eqn (31)] are again represented by
dashed lines, and, as in Fig. 4, the horizontal axis is plotted as v'7,
as suggested by these theoretical resulls. The parameter a is
estimated from (b) (x =0-0791), and {2) and (c) thus contain no
adjustable parameters. The fit between numerical results is excellent
for x(v), and reasonable for p(v) and »(v}.
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FiG. 7. As for Figs 3 and 5 for the “superinfection” metaphor,
case 1, run for 107 mutations taken from a harmonic distribution
(n(v) such that 1/v is uniformly distributed between 1 and 1/5 » 1;
here § = 0-01). The dashed lines represent the theoretical results for
p(©) [eqn (44)], »(v) {from eqn (48)] and x{v) [eqn (23}]. As before
# is estimated from (b) (x = 0-1705), with no adjustable parameters
in (a) and (c). With this harmonic distribution, there is a minimum
v-value, v = § = 0-01, as shown. The agreement between theoretical
and numerical results is, as before, excellent for x(p}, and not bad
for p and y.

“rank-abundance” plots, where species are ranked
(along the horizontal axis) in descending order
of their abundance, while the abundances them-
seives are plotted on the vertical axes (usually logar-
ithmically). This is a standard way of displaying
information about SRA (see, for example, May,
1975).

For our models, things are simpler when y(v) is a
monotonic function of ¢, as it is for both the opposite
limiting cases I and I1, for most forms of the mutant
distributions, n(r). Thus, as is seen from Figs 2-8,
¥(v) decreases monotonically with increasing v for
the uniform and exponential distributions (Figs 2-6),
although things are more complicated if the distri-
bution of mutant v-values is harmonic (Figs 7
and 8).

In what follows, we mainly restrict attention to
the case of a uniform mutant distribution, but
considering both of the opposite limits of case 1

(constant transmissibility) and case II (constant viru-
lence).

If the abundance of individua! species, y{v), indeed
decreases as » increases, then the corresponding
“rank” is measured simply by the number of species
having v-values below v. But this is the quantity 7(v)
defined by eqn (41). That is, for monotonically de-
creasing abundance y(v), rank is measured by I{v).
For the more general case where y(r) is a unimodal
function of v in the interval 0 < » < 1 (as in Figs 7 and
8), we compute the rank abundance relation as fol-
lows: for any given abundance, y(v), less than that of
the most abundant species, y,,,, calculate (from y(v)
as a function of v) the two corresponding v-values, v_
and v, , below and above the value, v,,,, which gives
Vmax» T€Spectively; the total number of species with
abundance greater than y{t}—the “rank’ of y(v)—is
then I = |+ p(s) ds.
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F1G. 8. This sequence of Figs 3-8 is completed by showing the
analogue of Figs 4 and 6 for the “metapopulation” metaphor, case
11, but now with a total of 10 mutations generated by the harmonic
distribution defined in Fig. 7. Dashed lines show theoretical
estimates for p(v) [eqn (47)], y(v) [from eqn (48)] and x(v) [eqn
{31)]. For the same reasons as in Figs 4 and 6, the horizontal axis
is scaled as #'2, rather than v. Because of this scaling, the minimum
value of v(y =001, +"?=0-1) is more obtrusive. From (b), we
estimate « = 0-1741, leaving no adjustable parameters in (a) and
(c). As before, theoretical and numerical results are in excellent
agreement for x(p), and are reasonable for p and y.
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CASE I, WITH UNIFORM MUTANT DISTRIBUTION (n{z) = 1)

In this limit, the g(v) of eqn (39) is g(») =1 v,
and so the rank-function, I{(p), is given by eqn (41) as

(v} = (Ya)In[1/(1 — v}, (51)

The corresponding expression for y(v) is given by
eqn (49), y(@) = (2/2)(1 —v). We can eliminate the
“dummy” variable, v, to get an explicit relation
between rank, 7, and abundance, y, for this example:

I =(1/a)Infa/(2y)). (52)

That is, in this basic cxample, we get a straight line
(with negative slope, —a) if we plot In(abundance)
against rank.

Figure 9 gives the SRA generated by our numerical
simulations of the system of eqns (2), for case [ and
a uniform mutant distribution. It confirms the ana-
lytic resuit, showing a linear relation between
In(abundance) and rank. Such a relation corresponds
to a geometric distribution of SRA.

CASE II, WITH UNIFORM MUTANT DISTRIBUTION
(r(v)=1)
Here we have c(v) =»'”, so that, from eqn (39),
g(v) =2(1 —¢'?), and so, from eqn (41),
I(v) = (/) Inft/(1 —»'?)], (53)

From eqn (50), y(v) = a(1 —»"?). Again eliminating
the dummy variable v, we have the rank-abundance
relation for this example:

I =(l/a)In(a/y). (34)

This is essentially identical with the corresponding
result for case I, as illustrated by Fig. 9.
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F1G. 9. The rank-abundance relation generated by the “superin-
fection” metaphor, case I, with mutations arising uniformly along
the p-axis. As suggesicd by the asymptotic theoretical eqn (52),
there is a roughly linear relation between the logarithm of abun-
dance (vertical axis) and species rank (i.e. position in the abundance
hierarchy, as plotted along the horizontal axis). For a more full
discussion, see the text.

Broadly similar patterns are found for exponential
distribution of mutants, where the results for y(v) and
p(v}y—and thence I{(v }—are indicated by the theoreti-
cal and numerical curves in Figs 5 and 6. For a
harmonic distribution of mutants, the theoretical and
numerical expressions for y(v) as a function of » are
unimodal on {0, 1), rather than monotone decreasing,;
see Figs 7 and 8. The corresponding rank-abundance
relation is calculated along the lines sketched above.
For example, for Case I with a harmonic probability
distribution of mutants [see eqn (44) and preceding
discussion], we have y =(z/2)v(1 —¢), and hence
vo,o- =121 20 = y/re)?, with  yo,=a/8.
The rank-function, 7, is then 7= [+ p(s)ds=
(l/a)In(v? /v?). That is, for this example, the rank
abundance relation is

I=Ql)n {1 + (1~ p/Yau YV
= =y /Vau I} (55)

For p noticably less than y,,,, eqn (55) reduces to the
approximate expression

I~ (2/o)Inf2/(2y)]. (56)

Apart from a handful of the most abundant species,
eqgn (55) thus also implies a geometric distribution of
SRA, similar to eqns (52) and (54} (but with double
the slope when In(p) is plotted against I, essentially
because species abundance falls away on two sides of
the peak for a humped y(v) vs. v curve, as in Figs 7
and &, in contrast to the single side of the peak for the
monotone y(v) vs. v curves of Figs 3-6).

We conclude that, in general (and especially if the
spectrum of mutations is uniform or close to it along
the v-axis), dynamical models of the kind studied here
tend, over time, to produce roughly geometric pat-
terns of SRA. Of course, our models emphasize
an essentially one-dimensional trade-off, namely, en-
hanced competitive ability (as reflected by position in
the dominance or superinfection hierarchy) versus
superior transmissibility and/or lower induced death
rate of hosts or patches. A more richly textured set of
factors would, other things being equal, tend to
compound such geometric distributions, eventually
producing a lognormal distribution of SRA once
things were sufficiently multifactorial.

10, Total Number of Species as a Function
of Time

As our systems of eqn (2) evolve, with new mutant
species/strains appearing and sometimes establishing
themselves and displacing earlier ones, how many
species do we expect to have at time ¢ after the start?
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The answer to this question follows immediately
from eqn (41) for the asymptotic value of I{v), the
number of species with »; <. The total number of
species at time ¢, n(1), is simply I(v .. ):

n(t) = (1/a)In[g(0)/g Wemas )] (57)

Here v, is the v-value of the species closest to the
upper limit of unity, and g(v) is defined by eqn (39).
For n(t) » 1, we can write v,,, = 1 —e(¢), with ¢ € 1.
Then g(vn.) =i _ c(s)n(s)ds ~ec(1)n(l), and we
can write

n(t) = (1ja)In(a/je). (58)

The constant a is defined as a= j(‘, c(s)n{s)ds/
c(Dn(1).

It remains to find an explicit expression for e(t). We
first note that, for any single mutation, the probability
of being within a small distance ¢ of v,=1, p{e}, is
given by

p(e)z'IAl n(s)ds. (59)
l—¢

Here we can ignore the complications of establish-
ment, encapsulated in the factor ¢(v), because—by
assumption—such a mutant will be the closest one to
v; = I, and will therefore automatically establish itself.
Thus, for € <1, eqn (59) gives

ple}=en(l). (60)

The corresponding probability that any one mutation
will not fall betweenv =1 —candv = lis | — p. After
f trials or mutations, this probability of no mutation
falling between v =1 —cand v =1 is (1 — p), which
fore <1 and ¢ » 1 is e™™. We may thus define (1),
the expected difference between v, and 1 after a long
time 1, as the value of ¢ such that the probability of
no muiant having arisen between 1 — ¢ and 1 is 50%:
€7 = 0-5. Then, using eqn (60) for p(¢) in the general
case of a mutant probability distribution n(v), we
have

() = (In 2)/[rm (1)}. (61}
Substituting eqn (61) in eqn (58), we have the result
n(t) = (1/a)In(yt). (62)

Here y is some constant, which depends on the mutant
probability distribution, z(v), and the asymptotic
establishment probability, c(v): y = [} e(s)n(s)ds/
[c(1)In2]). This result, eqn (62), has been derived
under quite general assumptions. It says that the
asymptotic total number of species increases as In ¢,
with time 7 measured in units of the average interval
between mutations, t (so that we can alternatively

simply count numbers of mutations, t = N(1)r;
usually we put v = 1),

Figures 10 and 11 give numerical results which
confirm the theoretical eqn (62). Figure 10 is for case
I (¢(v)=1) with a uniform mutation distribution
{(r(v)=1, and so y =1/In2), and it shows—apart
from initial transients—a linear relation between total
number of species, n(¢), and time or, equivalently,
number of mutants to have appeared, plotted logar-
ithmically (the figure is based on a very long run,
extending to N = 10" mutants).

Figure 11 illustrates some of the underlying fea-
tures of egn (62) and Fig. 10, by showing the numbers
of species, and their abundances and locations on the
v-axis, for snapshots of a representative run (of case
1 with n{z) = 1) at ¢t =10°, 10%, and 10°. As is clear
from eqn (41) for I{v}), the total number of species
with u-values up to, say, v = 0-5 does not increase
with time, once it has reached the long-term average
value given by eqn (41). There is reshuffling and
fluctuation in the exact locations and abundances of
the strains, but 7(0-5) remains at around its average
value of 6-3. What happens as time, ¢ (and mutations,
N), increases is that u,,, gets closer and closer to
v = 1, thus adding new species (with low abundances)
at the upper end of the v-spectrum; such new ad-
ditions accumulate slowly, as In £

The result of eqn (62), that n(r) scales as In¢, is a
robust and interesting one for models of the general
kind explored here. We will look at it further in
Section 12,
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Fi1G. 10. The number of strains/species arising in the system of
eqn (2}, a(t), as & function of time, ¢, or equivalently of the total
number of mutations to have appeared (N = ¢, under the normal-
ization that the average time interval between successive mutations,
7, is given by © = {}. Specifically, this figure is for the “superinfec-
tion” case I, with mutations generated uniformly along the ¢-axis
(n(v) = 1). The extensive numerical simulations follow the system
until a total of 10° mutants have appeared. The figure shows
average values of 100 independent runs. The linear regression
is done for the 50 larger values of N. These numerical results
are in excellent agreement with the asymptotic expression,
n(ry=(1/a)In(t), of eqn {60}, here o« =0-114.
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FiG. 11. Here the features underlying Fig. 10 are further am-
plified. The abundance of the species present, and their location
along the p-axis, are shown for the same numerical simulations
illustrated in Fig. 10, at the particular times (a) ¢ = 10’; (b) 10% and
(c) 10°. The properties illustrated by Fig. 11 are discussed at length
in the text.

11. Effects of Reducing the Numbers of Hosts or
Habitat Patches

Suppose that in egn (1) or (2) the total number of
hosts, or of available habitat patches, is reduced (by
environmental catastrophe, human activities, immi-
gration, or whatever) from the original total of X to
some smaller fraction, AK, with A < 1. The parameter
h thus measures the remaining fraction of hosts or
patches. How will such a change affect the total
number of strains/species, the average “virulence”,
and so on?

To answer these questions, we return to our basic
eqn (i), and remember that the wvariables y,
(i=0,1,2,...,n) represent the total number of
hosts/patches that are susceptible/empty (i =0) or
infected/occupied by strain/species i (i =L, 2, ..., n),
divided by the total number of hosts/patches, K.
Thus, in the original state, Zj_,»,=1. But if a
proportion 1—hA are vaccinated/destroyed, then
7.0 ¥;= h; under our assumption that transmission/
dispersal is homogeneously distributed among all

hosts/patches, the “removed” fraction | — & of the
original hosts/patches are no longer candidates for
viable infection or colonization—propagules arriving
at these sites “fall on stony ground”. For a more
extended discussion of this formalism, in the context
of vaccination programmes, along with supporting
data, see Anderson & May (1991, ch. §). Nee et al.
(1994) discuss how this analysis can be extended,
mutatis mutandis, to metapopulation models.

Returning to our basic eqn (2), we now have
yo=h —Z}_, y;, and thence

=i+l

The stable solutions are thus given by

yE=h—@+o)b— Y vrI+@b) (69)

j=i+1
if y¥>0, and by
y¥=0, (65)

otherwise. These equilibrium solutions are exactly as
in eqns (3) and (4), except that the first term on the
r.hs. of eqn (64) is now A, not 1.

This implies that the maximum virulence is now
reduced, with [(# + 0,)/6;]n.x < . Essentially all our
previous results remain valid, with the simple change
that “17—the renormalized limit to the range of
v-values in Figs 2-8 and so on (with « =0 and
b = 1)—is replaced by “A™.

Specifically, for case I (the “superinfection”
metaphor, with b, = constant = 1) and with a uniform
distribution of mutants (z(v)=1 on (0, I)), we can
again run through the arguments in Section 5, 6 and
7, to get expressions for x(h,v), p(h,v) and y(h,v),
respectively, Clearly the total abundance of species
between v and v + do, x(h, v} dv, is exactly as before,
for 0 <p < h:

x(h,v)=1/2. (66)
The density of species at v, = v is now
plh,o)=1[o(h —v)]. (67)

And the average abundance of an individual species
at v is

y(h,v) = (@/2)(h —v). (68)

The species-rank function, I(v) = {} p(s)ds, is then
given explicitly by

I{v) = (1ja)In[k/(h —v)). (69)
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Combining eqns (68) and (69), the rank-abundance
relationship is seen to be

I'=(1/a)Infha f(2))). (70)

This differs from the carlier eqn (52) only by the
constant factor A in the logarithm. That is, we get a
linear relation between rank, 7, and In(abundance),
with the same slope as before, but with the intercept
with the vertical axis (the maximum value of In y)
being lower (by the amount In &).

In general, if the host/patch removal takes place at
t =0, then the asymptotic expression for the total
number of species, n{h, ), a long time, ¢, later is again
obtained by the arguments given in Section 10 (with
“h™ consistently replacing “1” as the upper limit to
v-values). This gives

n(h, t) = (1fa)In[y(h)e]. (71)

Here, as before, ¢ is measured in units of the average
interval between mutations, t (usually, we put 1 =1,
and so ¢t =N, the total number of mutations).
Equation (71) is identical with the earlier eqn (62),
except that the constant y{#) now has the somewhat
smaller value y(h) = [§ c(s)n(s)ds/[c(h)In 2}. In par-
ticular, for case I, with a uniform mutation distri-
bution (c(v}=1 and n(v)=1), y(h) = #/(In 2).

Thus the most interesting properties of »(z) are
asymptatically affected only slightly by removal of
hosts or patches: the total number of strains or
species, after a sufficiently long time has elapsed,
depend logarithmically on ¢ (or, equivalently, on
the number of mutations that have appeared). On
the other hand, the immediate effect of removing
a fraction (1 — &) of all hosts or patches is to cause
a marked reduction in the total number of
strains/species. Suppose the pristine system has been
running for a time ¢,, accumulating a total number of
species n{h =1, ) given by eqn (62). If a fraction
1 — k of all patches are then removed at ¢ = ¢, the
number of species remaining will be given by integrat-
ing the pristine expression for the number of states at
v, plh =1, v), from v =0 to the new upper limit at
v =h:

n(h, )= Ikp(h =1,v)dp, (72a)
0

= (i/a)r dv /(1 — ). (72b)

That is, immediately after the patches are removed,
the remaining total number of species is

n(h, 1) = (1/e)n[1/(1 — h)]. (73)

Then, as time goes on, the total number of species
(with v-values in the interval (0, #)) slowly grows—as
described by eqn (71) with “t” =1t —,—and new
species crowd in close to the upper limit at v = 4, in
the manner indicated by Fig. 11.

Figure 12(a) illustrates these processes. The figure
shows the results of numerical simulations for case I
with a uniform mutation distribution. (¢(»)=1 and
n(v)=1). After a time + = 3000 (i.e. after 3000 mu-
tations have appeared), 50% of all hosts/patches are
removed. The result is seen initially to be a marked
reduction in the total number of species present,
followed by this total then recovering to something
close to the previous levels (at equivalent times, or
after an equivalent number of mutations). At time
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FiG. 12. (a) The number of species present, n(r), as a function
of time, ¢ {or, equivalently, number of mutations that have arisen,
N =1), is shown for the “superinfection” case I, with mutations
arising uniformly along the v-axis {(n(v) = 1). At ¢ = 3000, the total
number of hosts/patches is decreased by 50% (h =0-5); n(f)
subsequently increases, until again reduced by removal of 9G% of
all hosts/patches at ¢ = 6000 (A =0-1). Subsequently, n(r) again
increases; the somewhat different fluctuation character for ¢ > 6000
is because mutations are still arising uniformly along 0 < v < 1, but
only 1/10 of these (0 < ¢ < (-1) now have the possibility of persist-
ing (V,, =01 for h =01}, (b) Corresponding average values of
the virulence, {¥), as a function of time, r. Removal of 50% and
then 90% of all hosts/patches permanently reduces (V") 10 0-5 and
then -1 of its originat value. Sece text for a fuller discussion.
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t =6000 (i.e. after a further 3000 mutations have
occurred), there is a further reduction in the number
of hosts/patches, to 10% of the original total. Once
again, there is an immediate marked reduction in the
total number of species present, followed by a recov-
ery back toward a higher species total. As described
by the theoretical result, eqn (71), this recovery goes
as n{h, t) = (/) [In(y(1)1) + In{h)]; after equal inter-
vals of time have elapsed, the species totals with
h =0-5and & = 01 will be lower than the correspond-
ing totals for & = | by 6 and 20 species respectively
(remember, « =0-114 here). Figure 12(a) accords
with these theoretical expectations.

Finally, we emphasize that the cffects of host/patch
removal are significantly to reduce the average levels
of virulence. For the “superinfection” metaphor, this
means that the effects of vaccination are to remove
the most virulent strains, even though vaccination
levels may be insufficient to eradicate infection. For
the “multispecies metapopulation” metaphor, the
corresponding phenomenon is that the inferior com-
petitors, with their compensating greater mobility
and/or lower patch death-rates, are favoured by
patch removal; this conclusion was previously empha-
sized by Nee & May (1992} for the two-species case,
and extended to multispecies settings by Tilman
(1954).

Specifically, the average virulence, {p), is given
generally by the definition

W) = j” ox(v) do / I"" x(v) dv. (74)
0 0

That is, we compute the average value of v, weighted
according to the total abundance of species between
vand ¢ + dv, x(v) dv. For case I {constant b,) we have
x(v) = 1/2, regardless of the mutation distribution,
and so

vh))> =h/2. (75)

Thus the effect of removing a fraction | — A of all
hosts/patches is to reduce the average virulence of the
remaining strains from 1/2 to h/2. Figure 12(b)
illustrates this, applying the results of the numerical
simulations shown in Fig. 12(a) to calculate average
virulence as a function of time. For case II (constant
v; =1y, and then v defined formally as v = 1y/5,), eqn
(74) gives {v(h)> = h/3, with again a reduction lin-
carly proportional to A.

In summary, removing a fraction of all hosts or
patches has relatively little long-term effect on the
total numbers of species in these systems, although it
does have significant short-term effects. There are,
however, persisting implications for the average viru-
lence, or in other contexts, for the average competitive

abilities and/or mobility of the species which make up
the post-removal community.

12. Conclusions

The bulk of this paper has dealt with analytic and
numerical exploration of the dynamical propertics of
the system of equations (2), as metaphors for superin-
fection processes among hosts exposed to many
different strains of an infectious agent or for the
behaviour of multispecies metapopulations. In these
models, we have an ensemble of strains or species,
with a strict hierarchy of competitive dominance.
Inferior competitors possess off-setting advantages in
having higher transmission or dispersal rates and/or
having lower virulences or patch death-rates. Qur
emphasis is on the evolution of such systems over
time, as new mutants keep appearing. How many
species are there? What is their relative abundance?
What are the effects of reducing the number of hosts
or habitat patches?

Our main conclusions are as follows.

(i) The numerical and analytic results shown in
Figs 2-11 suggest that we have built up a good
understanding of how the system described by eqn (2)
evolves, But the heuristically justified eqn (35), which
describes the asymptotic probability that a newly
established mutant with v;> v will cause the disap-
pearance of a species at v, remains a loose end. It is
clear from Figs 2, 3 and 4 that eqn (35) is asymptot-
ically accurate when the mutant distribution is uni-
form (z(r) = 1), for both the limiting cases I and II,
but it would be nice to have a rigorous proof and, if
possible, an a priori derivation of the phenomenolog-
ical parameter & (x = 0-114 here). For more general
mutant distributions, w(v) # 1, Figs 5-8 suggest that
eqn (35) is a good first approximation, although a
fully accurate treatment is likely to show that a
depends (weakly} on ». In short, it would be helpful
to have a deeper understanding of the issues summar-
ized in eqn (35).

(ii) As previously emphasized by Tilman (1994),
the species whose dynamical interactions are de-
scribed by equations of the general form of eqn (2)
exhibit what an earlier generation of researchers
would have called “limits to similarity”. A newly
arising mutant will not necessarily be able to invade
the existing community of species; rather, its values of
v; and b, need to lie in particular ranges, and not in
others, if invasion is to be possible. These altowed
ranges depend on the species already present, and are
specified by expressions such as eqns (15) and (19) for
cases I and II, respectively; Fig. 1 gives a more
pictorial version of eqn (15). As time goes on, more
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species are slowly accumulated (increasing as In t),
but essentially all of these additions are achieved
by increasingly fine division—increasingly close
“niche overlap”—among v-values near the upper
boundary of the allowed range, Fig. 11 illustrates this
point.

Earlier work on “limits to similarity” among com-
peting species tended to deal with questions such as
the average separation between species’ “utilization
functions™ along some resource axis, in relation to the
intraspecific variance (as refiected in the widths, w;, of
individual such utilization functions; see, for example,
May & MacArthur, 1972), But such studies left open
the question of what determined w;, and so—quite
apart from other problems—the conclusions did not
really provide any basic understanding of how many
species we might expect to find packed along such a
resource continuum. The models explored in the
present paper are different; no limits to similarity are
built in. Rather, effective limits emerge, over time,
from the evolutionary dynamics of the system. We
could start with a stable equilibrium in which an
arbitrarily large number of species were evenly (and
very closely) spaced along the v-axis, but this initial
state would be disrupted by mutations, and would be
reshuffled (losing many species in the process) into
some configuration more like those illustrated in
Fig. 11; even after extremely long times have elapsed
(and huge numbers of mutants have come and gone),
the species with relatively low vo-values (or high
b-values; low virulence and/or high transmissibility)
will be relatively widely spaced. In these models,
moreover, past success is no predictor of persistence,
as even the relatively highly abundant and widely
spaced species at the tow end of the v-spectrum come
and go, as a result of reshufflling caused by new
mutants invading at high v-values.

Obviously, we recognize that these properties of
eqn (2) represent a very abstract metaphor for evol-
utionary processes. But it seems to be a new kind of
such mathematical metaphor, and one with suggestive
features.

(iii) One robust conclusion from our models is
that, asymptotically, the total number of species
increases logarithmically with time [or, equivalently,
total number of mutants that have appeared; eqn
(62)]. This result holds for both the limiting cases 1
and IT, and is essentially independent of the form of
the probability distribution, n(v). The result is illus-
trated in Fig. 10. Disturbance, in the form of a
(permanent) reduction in the number of hosts or
availabie habitat patches, causes an immediate
marked reduction in the species total, but this total
recovers, over time, as illustrated in Fig. 12.

Such an asymptotically logarithmic dependence of
the total number of species on time, n(z) ~ (}ja)In s,
could, in practice, be hard to distinguish from n(¢)
saturating to a constant value. Many trends in fossil
records—some of which are read as saturation—
could be seen as consistent with species totals tending
to rise as In ¢.

(iv) Our models evolve toward patterns of species
relative abundance that are geometric distributions
(i.e. linear relations between rank and in(abun-
dance)); these results are asymptotically exact if the
mutant probability distribution is uniform, a(v) =1,
and roughly true for more general z(v), for both of
the opposite limiting cases I and II. As reviewed
¢lsewhere (May, 1975; Begon et al, 1986), such
geometric SRA distributions are commonly observed
in early succession or in environmentally disturbed
situations, arguably because such settings tend to be
“ecologically one-dimensional™ (in the sense that one
set of ecological factors tend to predominate). In our
models, there is indeed a one-dimensional character
to the trade-offs between competitive dominance and
virulence or transmissibility, along our v-axis, but the
emergence of a geometric SRA distribution is not
trivial or a priori obvious.

{v) Reducing the number of hosts (in the superin-
fection metaphor) or the number of habitat patches
(in the multispecies metapopulation metaphor) fa-
vours those species which are lower in the hierarchy
of competitive dominance, but which have compen-
sating advantages in greater transmissibility/mobility
or in lower virulence/patch death rate. This is intu-
itively understandable: if there are fewer hosts, then
the overall incidence of infection will be lower, and
fewer hosts will be multiply infected (“‘superin-
fected™); consequently there will usually be less ad-
vantage to those strains with intrinsically lower
reproductive values, R, but which persist because
they win in multiply infected hosts.

This observation has implications both for the
evolution of virulence in the presence of superinfec-
tion, and more generally. First, it suggests that for
infections which have many strains with different
virulences, and where superinfection occurs, a vacci-
nation programme which has insufficient coverage
to eradicate the infection can nevertheless have
significant benefits in removing the most virulent
strains, and lowering the average virulence [see Fig.
12(b)]. Second, it provides explicit support, in a
superinfection context, for the ideas developed
by Herre (1993)—and supported by data for ne-
matode parasites of fig wasps—that average virulence
is likely to be greater when host density is higher.
Third, in the more general context of multispecies
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metapopulations, our results suggest that, other
things being equal, the species which survive extinc-
tion episodes caused by loss of habitat (as in Fig. 12)
will be those with better dispersal ability, and not the
superior competitors. We are pushing our metaphor
much too far in stating that such trends may indeed
be seen in some fossil records (¢.g. Jablonski, 1994),
but we cannot resist it.

We are grateful to David Tilman for stimulating ex-
changes. This work was supported in part by the Royal
Society (RMM), the Wellcome Trust and Keble College
(MAN).
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