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We extend our exploration of the dynamics of spatial evolutionary games [Nowak & May 1992,
1993} in three distinct but related ways. We analyse, first, deterministic versus stochastic rules;
second, discrete versus continuous time (see Hubermann & Glance [1993]); and, third, different
geometries of interaction in regular and random spatial arrays. We show that spatial effects
can change some of the intuitive concepts in evolutionary game theory: (i) equilibria among
strategies are no longer necessarily characterised by equal average payoffs; (ii) the strategy with
the higher average payoff can steadily converge towards extinction; (iii) strategies can become
extinct even though their basic reproductive rate (at very low frequencies) is larger than one.
The equilibrium properties of spatial games are instead determined by “local relative payoffs.”
We characterise the conditions for coexistence between cooperators and defectors in the
spatial prisoner’s dilemma game. We find that cooperation can be maintained if the transition
rules give more weight to the most successful neighbours, or if there is a certain probability
that celis may remain unoccupied in the next generations when they are surrounded by players
- with low payoffs. In this second case the cooperators can survive despite a very large payoff
advantage to defectors. We also compute average extinction times for random drift in neutral
spatial models. Finally we briefly describe the spatial dynamics of an interaction among three
species which dominate each other in a cyclic fashion. The emphasis of this paper is presenting
a variety of ideas and possibilities for further research in the evolutionary dynamics of spatial
games. The overall conclusion is that interactions with local neighbours in 2- or 3-dimensional
* spatial arrays can promote coexistence of different strategies (such as cooperators and defectors
in the Prisoner’s Dilemma), in situations where one strategy would exclude all others if the
interactions occurred randomly and homogeneously.

*
»

1. Introduction

Interesting phenomena arise when evolutionary
game theory [Maynard Smith, 1982] is expanded to
include spatial dimensions. .

Let us imagine a population where individual
players occupy certain positions (territories, cells,
etc.) on spatial grids. The game is played among
neighbours. Payoff may be thought of as being
related to reproductive success: more successful
strategies have more offspring. The spread of suc-
cessful strategies can be due to genetic transmission

~ (i.e. generation of offspring) or cultural transmission

(i.e. imitation of successful behaviour).
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There are several ways of including spatial ef-
fects in evolutionary games, depending on whether
interaction (i.e. playing the game) or dispersal of
offspring is local or global. In ordinary game dy-
namics the usual assumption is global random in-
teraction and dispersal. To the contrary, in this
and earlier papers we are mostly interested in the
effects that arise when both dispersal and interac-
tion are local. :

We will analyse the properties of spatial games
by considering the simple nonrepeated prisoner’s
dilemma (PD) as an interesting example. The PD
is a. well-known metaphor for the evolution of
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cooperation in populations of selfish individuals.
(We refer to Axelrod & Hamilton [1981], Axelrod
[1984], Axelrod & Dion [1988], Nowak & Sigmund
[1992, 1993a, 1993b]). There are only two strate-
gies: C (for cooperation) and D (for defection). If
two cooperators reet each receives a payoff of mag-
nitude R. If two defectors meet each receives the
smaller payoff P. In the game between a coopera-
tor and a defector, the defector receives the highest
payoff, T', and the cooperator only gets the lowest
payoff, §. The prisoner’s dilemma is usually defined
by T > R > P > S. This can, without loss of gen-
erality, be rescaled to the two-parameter situation
where T=b, R=1,P=¢(0<e<1),and S=0.
But we can simplify this game to a single parameter
by choosing € = 0. This does not alter the essen-
tial characteristics of the prisoner’s dilemma. If two
cooperators interact both receive 1 point. If a de-
fector “exploits” a cooperator, the defector receives
the payoff b (b >> 1) and the cooperator 0. The
interaction between two defectors also leads to the
zero payoff. This game is designed to keep things
as simple as possible. Our numerical explorations
suggest that the results of this paper are essentially
unchanged if we have € small, but larger than 0.

This game is now played on two (or three) di-
mensional lattices. Each position is occupied either
by a cooperator or a defector. In each generation
the payoff of a certain individual is the sum over
all interactions with its immediate neighbours. We
may also include self-interaction, if we assume that
several individuals of the same kind can occupy a
single patch. Self-interaction favours cooperators.
The strength of self-interaction can be described
by a single pararmeter, a, which denotes the addi-
tional payoff to a cell occupied by a cooperator. Ob-
viously self-interaction does not change the payoff
to defectors. If ¢ = 0 we completely exclude self-
interaction. If @ == 1 then self-interaction equals the
payoff for neighbouring cooperators. If a > 1 then
self-interaction is more important than interaction
among neighbours. Throughout the paper we will
compare games with and without self-interaction.

In the next generation an individual cell is occu-
pied by the strategy that received the highest payoff
among all the immediate neighbours of the cell and,
of course, the cell itself. This game is completely
deterministic.

One can also design spatial games with stochas-
tic transition rules by assuming that a strategy will
win a certain cell with a probability given by the
ratio of the strategy’s payoff over the total payoff

of all neighbours. To be precise we shall put this
into mathematical terms. Suppose there are n cells,
labelled i =1, 2,..., n. Let s; be 0 if cell 7 is a de-
fector and 1 if cell i .is a cooperator. A; denotes the
payoff of cell i. Nj; is the set of all cells which are
neighbours of cell j. The probability that the cell
labelled j, is occupied by a cooperator in the next
round, P, is then given by

Pj = Z A,S,/ Z A, (1)

iEN; iEN;

In the deterministic game a cell will be occu-
pied by a cooperator if the most successful strat-
egy in the neighbourhood is a cooperator. In the
stochastic game, a cell will become a cooperator
with a probability proportional to the total payoff
to cooperators among the neighbours. The natural
generalisation of these two possibilities is

P=3 A;"si/ S Ar. )

iENJ’ 'i-ENj

Here cell j will become a cooperator with a prob-
ability proportional to the sum of the mth powers
of the payoffs to cooperators over the sum of the
mth powers of all the payoffs in the neighbourhood.
Here m denotes an arbitrary positive number. The
larger m, the more likely it is that a cell will adopt
the strategy of its most successful neighbour. Thus
m represents a weighting factor favouring the most
successful neighbour. There is an interesting range
of games for different values of m. If m = 1 we have
the original stochastic game. For m — oo we obtain
the deterministic game. For m = 0 the payoff does
not matter, and we have neutral drift between the
two strategies.
Another possibility is

e (540 /(5 o)

iEN, ieN;
+ (g\; A1 - si))m] . (3)

This means a cell will become a cooperator with
a probability given by the mth power of the total
payoff to cooperators in the neighbourhood over the
sum of the mth powers of the total payoff to coop-
erators and defectors. But throughout the paper
we shall restrict our analysis to Eq. (2). Of course,
Egs. (2) and (3) describe the same game for m = 1.



Equations 1-3 are only valid if the denominators are
larger than zero. Obviously we define P; = 0 if the
denominators are zero, i.e. if there are only individ-
uals without any payoff, then the cell will become
a defector.

Spatial games can be played in discrete time
(where we consider populations which effectively
have non-overlapping generations) or in continuous
time (populations with overlapping generations).
For discrete time simulations the payoffs of each
cell are evaluated and subsequently all the individ-
ual cells are updated simultaneously. This corre-
sponds to the frequently-seen biological situation
‘where an interaction phase is followed by a repro-
duction phase; although the game may be played
‘with individual neighbours in continuous time, at
the end of each round of game playing the “gaming-
chips” are cashed in, and the cashier pays in
fitness coinage. For continuous time simulations
individual cells are chosen randomly and immedi-
ately updated. In this situation interaction and
reproduction occur simultaneously [Hubermann &
Glance, 1993]. For a discussion of discrete and
continuous dynamics in territorial models and else-
where we refer to Maynard Smith [1976], or God-
fray & Hassel [1987, 1989]; Hubermann & Glance
[1993] are under the extraordinary misapprehension
that essentially all “the patterns and regularities
observed in nature require continuous descriptions
and asynchronous simulations.” As we shall see be-
low, most of our basic conclusions are unaffected by
whether we use discrete or continuous time anyway.

2. Square Lattices

Let us suppose the individual players occupy cells
in a square lattice, and interaction occurs with the
8 immediate neighbours (the cells corresponding to
a chess king’s move, sometimes called the Moore
neighbourhood). First we consider the game with
self-interaction.

The deterministic game (m — oo) has been de-
scribed in detail before [Nowak & May, 1992, 1993)}.
The dynamical behaviour of the system depends on
the magnitude of the parameter b. The discrete na-
ture of the possible payoff totals means that there
are only discrete transition points for b that influ-
ence the dynamics. For 1 < b < 3 these transi-
tions occur at 9/8, 8/7, 7/6, 6/5, 5/4,9/7, 8/6, 7/5,
6/4, 8/5,5/3, 7/4, 9/5, 2, 9/4, 7/3, 5/2, 8/3. The
top row in Fig. 1 shows 10 qualitatively different
parameter regions for simulations with discrete gen-
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erations (i.e. an interaction phase is followed by a re-
production phase). The top row in Fig. 2 shows the
same simulations for continuous time; the paper by
Hubermann & Glance [1993] restricts its attention
only to the single parameter region 9/5 < b < 2.
The top rows in Figs. 1 and 2 are similar in that
both show a range of b-values for which coopera-
tors and defectors persist together.

Both for discrete and continuous time, and for
varying degrees of stochasticity in “who wins,” we
find that coexistence between cooperators and de-
fectors is possible for values of b between 1 and 3.
There is a number of different parameter regions
where cooperators and defectors organize themselves
into interesting static or oscillating patterns. For
the discrete, deterministic game we find, amongst
other things, a particularly interesting parameter
region given by 9/5 < b < 2. Here clusters of coop-
erators are embedded in a world of defectors. Such
clusters grow and shrink. They move towards each
other and fuse or are repelled (by defectors in be-
tween which receive very high payoffs). Cooperators
gain along straight lines and lose along irregular
boundaries. This results in chaotic fluctuations of
the frequency of cooperators around the long time
average 12log2-8 [Nowak & May, 1993]. This was
derived with a very crude approximation, and it is
still unclear why it works so well. Figure 3 shows
the cluster size distribution for cooperators. The
average cluster size is around 23. This particular
regime of behaviour is not found in the game where
time is continuous [Hubermann & Glance, 1993).

We made another empirical observation for the
deterministic game in discrete time: the ratio of

changing to nonchanging cells in each generation - - -

equals (to an excellent approximation) the fraction
of cells which are cooperators. For the game with-
out self-interaction these two quantities are propor-
tional to each other (Fig. 4). :
In discrete and deterministic games, interesting
(and beautiful) structures emerge if a single defec-
tor invades a world of cooperators (see Nowak &
May [1993]). Figure 5 shows the area—perimeter
relation for the evolving structure in a world with-
out boundaries. The area is just the total number
of defectors, and the perimeter is the total number
of borderlines between cells which are occupied by
cooperators and cells which are occupied by defec-
tors. The perimeter contains one large closed curve
on the outside of the growing structure of defec-
tors and many small closed curves around interior
islands of cooperators. The figure shows that the
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