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H I G H L I G H T S

� We explore the evolution of direct reciprocity in groups of n players.
� We show why it is instructive to consider zero-determinant (ZD) strategies.
� ZD strategies include AllD, AllC, Tit-for-Tat, extortionate and generous strategies.
� In small groups, generosity allows the evolution of cooperation.
� In large groups, cooperation is unlikely to evolve.
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a b s t r a c t

Repetition is one of the key mechanisms to maintain cooperation. In long-term relationships, in which
individuals can react to their peers' past actions, evolution can promote cooperative strategies that
would not be stable in one-shot encounters. The iterated prisoner's dilemma illustrates the power of
repetition. Many of the key strategies for this game, such as ALLD, ALLC, Tit-for-Tat, or generous Tit-for-
Tat, share a common property: players using these strategies enforce a linear relationship between their
own payoff and their co-player's payoff. Such strategies have been termed zero-determinant (ZD).
Recently, it was shown that ZD strategies also exist for multiplayer social dilemmas, and here we explore
their evolutionary performance. For small group sizes, ZD strategies play a similar role as for the
repeated prisoner's dilemma: extortionate ZD strategies are critical for the emergence of cooperation,
whereas generous ZD strategies are important to maintain cooperation. In large groups, however,
generous strategies tend to become unstable and selfish behaviors gain the upper hand. Our results
suggest that repeated interactions alone are not sufficient to maintain large-scale cooperation. Instead,
large groups require further mechanisms to sustain cooperation, such as the formation of alliances or
institutions, or additional pairwise interactions between group members.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

One of the major questions in evolutionary biology is why
individuals cooperate with each other. Why are some individuals
willing to pay a cost (thereby decreasing their own fitness) in
order to help someone else? During the last decades, researchers
have proposed several mechanisms that are able to explain why
cooperation is abundant in nature (Nowak, 2006; Sigmund, 2010).
One such mechanism is repetition: if I help you today, you may
help me tomorrow (Trivers, 1971). Among humans, this logic of

reciprocal giving has been documented in numerous behavioral
experiments (e.g., Wedekind and Milinski, 1996; Keser and van
Winden, 2000; Fischbacher et al., 2001; Dreber et al., 2008; Grujic
et al., 2014). Moreover, it has also been suggested that direct
reciprocity is at work in several other species, including vampire
bats (Wilkinson, 1984), sticklebacks (Milinski, 1987), blue jays
(Stephens et al., 2002), and zebra finches (St. Pierre et al., 2009).
From a theoretical viewpoint, these observations lead to the
question under which circumstances direct reciprocity evolves,
and which strategies can be used to sustain mutual cooperation.

The main model to explore these questions is the iterated
prisoner's dilemma, a stylized game in which two individuals
repeatedly decide whether they cooperate or defect (Rapoport and
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Chammah, 1965; Doebeli and Hauert, 2005). The payoffs of the
game are chosen such that mutual cooperation is preferred over
mutual defection, but each individual is tempted to defect at the
expense of the co-player. Theoretical studies have highlighted
several successful strategies for this game (Axelrod and Hamilton,
1981; Molander, 1985; Kraines and Kraines, 1989; Nowak and
Sigmund, 1992, 1993b). Evolution often occurs in dynamical cycles
(Boyd and Lorberbaum, 1987; Nowak and Sigmund, 1993a; van
Veelen et al., 2012): unconditional defectors (ALLD) can be invaded
by reciprocal strategies like Tit-for-Tat (TFT), which in turn often
catalyze the evolution of more cooperative strategies like generous
Tit-for-Tat (gTFT) and unconditional cooperators (ALLC). Once ALLC
is common, ALLD can reinvade, thereby closing the evolutionary
cycle (Nowak and Sigmund, 1989; Imhof et al., 2005; Imhof and
Nowak, 2010).

The above mentioned strategies for the iterated prisoner's dilemma
share an interesting mathematical property: they enforce a linear
relationship between the players' payoffs in an infinitely repeated
game (Press and Dyson, 2012). For example, when player 1 adopts the
strategy Tit-for-Tat, the players' payoffs πj will satisfy the equation
π1�π2 ¼ 0, irrespective of player 2's strategy. Similarly, when player
1 adopts ALLD, payoffs will satisfy cπ1þbπ2 ¼ 0 (where c and b
denote the cost and the benefit of cooperation, respectively; this
version of the prisoner's dilemma is sometimes called the donation
game, see e.g. Sigmund, 2010). Finally, when player 1 applies gTFT, the
enforced payoff relation becomes π2 ¼ b. Strategies that enforce such
linear relationships between payoffs have been called zero-
determinant strategies, or ZD strategies (this name is motivated by
the fact that these strategies let certain determinants vanish, see Press
and Dyson, 2012). After Press and Dyson's discovery, several studies
have explored how ZD strategies for the repeated prisoner's dilemma
fare in an evolutionary context (Akin, 2013; Stewart and Plotkin, 2012,
2013; Hilbe et al., 2013a,b; Adami and Hintze, 2013; Szolnoki and Perc,
2014a,b; Chen and Zinger, 2014), and in behavioral experiments (Hilbe
et al., 2014a).

Zero-determinant strategies are not confined to pairwise
games; they also exist in the iterated public goods game (Pan
et al., 2014), and in fact in any repeated social dilemma, with an
arbitrary number of involved players (Hilbe et al., 2014b). In this
way, it has become possible to identify the multiplayer-game
analogues of the above mentioned strategies. For example, the
multiplayer-version of TFT in a repeated public goods game is
proportional Tit-for-Tat (pTFT): if j of the other group members
cooperated in the previous round, then a pTFT-player cooperates
with probability j=ðn�1Þ in the next round, with n being the size of
the group. Herein, we will explore the role of these recently
discovered multiplayer ZD strategies for the evolution of
cooperation.

We consider two evolutionary scenarios. First, we consider a
conventional setup, in which the members of a well-mixed
population are engaged in a series of repeated public goods games,
and where successful strategies reproduce more often. In line with
previous studies (Boyd and Richerson, 1988; Hauert and Schuster,
1997; Grujic et al., 2012), our simulations confirm that the
prospects of cooperation depend on the size of the group. Small
groups promote generous ZD strategies that allow for high levels
of cooperation, whereas larger groups favor the emergence of
selfish ZD strategies such as ALLD. For our second evolutionary
scenario, we consider a player with a fixed ZD strategy whose co-
players are allowed to adapt their strategies over time. Similar to
the case of the repeated prisoner's dilemma (Press and Dyson,
2012; Chen and Zinger, 2014), the resulting group dynamics then
depends on the applied ZD strategy of the focal player. But also
here, the possibilities of a single player to generate a positive
group dynamics diminishes with group size, irrespective of the
strategy applied by the focal player.

Taken together, these results suggest that larger groups make it
more difficult to sustain cooperation. In the discussion, we will
thus argue that there are three potential mechanisms that can
help individuals solving their multiplayer social dilemmas: they
can either provide additional incentives on a pairwise basis (Rand
et al., 2009; Rockenbach and Milinski, 2006); they can coordinate
their actions and form alliances (Hilbe et al., 2014b); or they can
implement central institutions which enforce mutual cooperation
(Ostrom, 1990; Sigmund et al., 2010; Sasaki et al., 2012; Cressman
et al., 2012; Traulsen et al., 2012; Zhang and Li, 2013;
Schoenmakers et al., 2014).

2. Model

2.1. Iterated multiplayer dilemmas and memory-one strategies

In the following, we consider a group of n individuals, which is
engaged in a repeated multiplayer dilemma. In each round of the
game, players can decide whether to cooperate (C) or to defect (D).
The payoffs in a given round depend on the player's own decision,
and on the number of cooperators among the remaining group
members. That is, in a round in which j of the other n�1 group
members cooperate, the focal player receives aj for cooperation,
and bj for defection (see also Table 1). We suppose that the
multiplayer game takes the form of a social dilemma, such that
payoffs satisfy the following three conditions (see also Kerr et al.,
2004): (a) individuals prefer their co-players to be cooperative,
ajþ1Zaj and bjþ1Zbj for all j; (b) within a mixed group, defectors
outperform cooperators, bjþ14aj for all j; (c) mutual cooperation
is favored over mutual defection, an�14b0. Several well-known
examples of multiplayer games satisfy these criteria, including the
public goods game (see e.g. Ledyard, 1995), the volunteer's
dilemma (Diekmann, 1985; Archetti, 2009), or the collective-risk
dilemma (Milinski et al., 2008; Santos and Pacheco, 2011; Abou
Chakra and Traulsen, 2014).

We assume that the multiplayer game is repeated, such that
the group members face the same dilemma situation over multiple
rounds. Herein, we will focus on infinitely repeated games, but the
theory of ZD strategies can also be developed for games with
finitely many rounds, or when future payoffs are discounted (Hilbe
et al., 2014a, 2015). In repeated games, players can react on their
co-players' previous behavior. In the simplest case, players only
consider the outcome of the last round, that is, they apply a so-
called memory-one strategy. Memory-one strategies consist of
two parts: a rule that tells the player what to do in the first round,
and a rule for what to do in all subsequent rounds, depending on
the previous round's outcome. In infinitely repeated games, the
first-round play can typically be neglected (see also Appendix A.1).
In that case, memory-one strategies can be written as a vector
p¼ pC;n�1;…; pC;0; pD;n�1;…; pD;0

� �
. The entries pS;j correspond to

Table 1
Payoff table for multiplayer games with n group members (see also Gokhale and
Traulsen, 2010; van Veelen and Nowak, 2012; Gokhale and Traulsen, 2014; Peña et
al., 2014; Du et al., 2014). The payoff of a player depends on the player's own action,
and on the number of cooperating co-players. As an example of a multiplayer
dilemma, we will discuss linear public good games. There, cooperators contribute
an amount c40 to a common pool. Total contributions to the common pool are
multiplied by a factor r with 1oron, and evenly shared among all group
members. Thus, the payoff of a cooperator is aj ¼ rcðjþ1Þ=n�c, whereas the payoff
of a defector is bj ¼ rcj=n.

Number of cooperating co-players n�1 n�2 … 0
Payoff for cooperation an�1 an�2 … a0
Payoff for defection bn�1 bn�2 … b0
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the player's cooperation probability in the next round, given that
the player used SAfC;Dg in the previous round, and that j of the
other group members cooperated. Using this notation, the strategy
ALLD can be written as (0;…;0;0;…;0); the strategy ALLC takes the
form (1;…;1;1;…;1); and the strategy proportional Tit-for-Tat is
given by pTFT¼(1; n�2

n�1;…; 1
n�1;0;1;

n�2
n�1;…; 1

n�1;0).
When all players in a group apply memory-one strategies, one

can directly calculate the resulting payoffs for each group member,
using a Markov chain approach (Nowak and Sigmund, 1993b;
Hauert and Schuster, 1997). A detailed description is given in
Appendix A.1. However, it is worth noting that the computation of
payoffs is numerically expensive, because one needs to calculate
the entries of a 2n � 2n transition matrix (and the left eigenvector
thereof). The exponential increase in computation time for large
groups makes it difficult to attain evolutionary results beyond a
certain group size (for example, in Hauert and Schuster, 1997, the
maximum group size considered is n¼5).

2.2. Zero-determinant strategies

Only recently, Press and Dyson (2012) have described a
particular subclass of memory-one strategies for the repeated
prisoner's dilemma. With these so-called ZD strategies, a player
can enforce a linear relationship between her own payoff and the
co-player's payoff. Such strategies do also exist in multiplayer
social dilemmas (Hilbe et al., 2014b): a memory-one strategy p is
called a ZD strategy if there are constants l, s, and ϕa0 such that
the entries of p can be written as

pC;j ¼ 1þϕ ð1�sÞðl�ajÞ�
n� j�1
n�1

ðbjþ1�ajÞ
� �

pD;j ¼ϕ ð1�sÞðl�bjÞþ
j

n�1
ðbj�aj�1Þ

� �
: ð1Þ

By adopting such a strategy, player i can enforce the payoff
relationship

π� i ¼ sπiþð1�sÞl; ð2Þ
where πi is the payoff of player i, and π� i ¼

P
ja iπj=ðn�1Þ is the

average payoff of i's co-players (Press and Dyson, 2012; Hilbe et al.,
2014b). We call s the slope of the ZD strategy, as it controls how
the co-players' payoffs π� i change with the focal player's payoff πi.
Moreover, we call l the baseline payoff: when all players adopt the
same ZD strategy, then πi ¼ π� i, and Eq. (2) implies that each
player obtains the payoff πi ¼ l. The parameter ϕ in the definition

of ZD strategies does not have a direct impact on the enforced
payoff relationship (Eq. (2)). However, the value of ϕ determines
how fast payoffs converge over the course of the game (Hilbe et al.,
2014a). Thus, we call ϕ the convergence factor.

It is instructive to consider a few examples of ZD strategies for
the public goods game. One example is the strategy proportional
Tit-for-Tat with cooperation probabilities pC;j ¼ pD;j ¼ j=ðn�1Þ. The
strategy pTFT results from the definition of ZD strategies (1) by
setting s¼1 and ϕ¼ 1=c. Since s¼1, it follows from Eq. (2) that a
player using pTFT enforces the fair relationship π� i ¼ πi, that is, a
pTFT player ensures that he always gets exactly the average payoff
of the group. In a similar way, many well-known memory-one
strategies can be represented as ZD strategies, including ALLD,
ALLC, extortionate strategies (EXT), and generous strategies (GEN),
as shown in Table 2 and Fig. 1.

Compared to groups with memory-one players, the calculation
of payoffs becomes considerably more simple when all players
adopt ZD strategies. To see this, suppose each of the n group
members applies some ZD strategy with parameters li, si and ϕi. As
a result, each player enforces a linear payoff relationship as in
Eq. (2). Overall, this leads to n linear equations in the n unknown
payoffs πi. This system of equations can be solved explicitly (for

Table 2
Examples of ZD strategies for the repeated public goods game. The three strategies
ALLD, pTFT, and ALLC can be written as ZD strategies as specified in the table.
Moreover, one can define two important sub-classes of ZD strategies. Extortionate
strategies (EXT) choose the lowest possible baseline payoff, l¼0, and a positive
slope value, 0oso1. In this way, extortionate players ensure that their payoff is
always above average, πiZπ� i (Hilbe et al., 2014b). Generous ZD strategies (GEN),
on the other hand, choose the highest possible baseline payoff l¼ rc�c, and a
positive slope value 0oso1. As a consequence, generous players ensure that they
never outperform their co-players, πirπ� i . An illustration of these strategies is
given in Fig. 1.

Strategy Baseline
payoff l

Slope s Convergence
factor ϕ

ALLD 0 ðn�1Þr�n
ðn�1Þr

ðn�1Þr
cnðr�1Þ

EXT 0 s40 ϕ

pTFT rc�c
2

1 1
c

GEN rc� c s40 ϕ

ALLC rc� c ðn�1Þr�n
ðn�1Þr

ðn�1Þr
cnðr�1Þ

Average payoff
focal player

0 rc-c
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0

rc-c

ALLD

Average payoff
focal player

0 rc-c

EXT
 (s=0.8)

Average payoff
focal player

0 rc-c

pTFT

Average payoff
focal player

0 rc-c

GEN
 (s=0.8)

Average payoff
focal player

0 rc-c

ALLC

Fig. 1. Illustration of ZD strategies for the repeated public goods game. In each panel, the focal player applies a fixed ZD strategy (ALLD, an extortionate strategy EXT, pTFT, a
generous strategy GEN, or ALLC). The other group members are not restricted to any particular strategy. The x-axis depicts the resulting payoff πi for the focal player, and the
y-axis shows the corresponding average payoff of the other group members. The grey-shaded area depicts the space of all possible payoff combinations for the repeated
public goods game, and the black dashed line shows the payoff combinations where the focal player yields exactly the average payoff of the other group members. The
colored lines give the possible payoffs according to Eq. (2). For each ZD strategy, the parameter s corresponds to the slope of the colored line. Moreover, when sa1, the
parameter l corresponds to the intersection of the colored line with the dashed diagonal. For extortionate strategies, the line intersects the diagonal at l¼0, and it has a
positive slope s40 (for the graph we use s¼0.8, implying that on average, the co-players only get 80% of the extortioner's payoff). For generous strategies the line intersects
the diagonal at the social optimum, l¼ rc�c, and it has a positive slope s40. Because the colored payoff lines for ALLD and EXT are below the diagonal, this shows that
defectors and extortioners earn more than average. On the other hand, GEN and ALLC yield a payoff below average. The payoff of pTFT always matches the average payoff of
the group.
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details, see Appendix A.2); the payoffs of the players are given by

πi ¼ ð1þκiÞ
Pn

j ¼ 1 κj � ljPn
j ¼ 1 κj

�κi � li; ð3Þ

where

κi≔
ðn�1Þð1�siÞ
1þðn�1Þsi

: ð4Þ

This formula allows a fast calculation of payoffs even in large
groups.

The representation of ZD strategies in Eq. (1) has one apparent
disadvantage. Because the definition requires three free para-
meters l, s, and ϕ, it may be difficult to decide whether or not a
given memory-one strategy p can be written as a ZD strategy. To
solve this difficulty, one can derive an alternative representation of
ZD strategies. In Appendix A.3, we show that a memory-one
strategy p¼ ðpS;jÞ is a ZD strategy for the public goods game if
and only if the entries satisfy

pS;jþ1�pS;j ¼ pS;j�pS;j�1 for SAfC;Dg; 1r jrn�2

pC;jþ1�pD;jþ1 ¼ pC;j�pD;j for 0r jrn�2: ð5Þ

For general group sizes n, these conditions define the
3-dimensional subspace of ZD strategies, within the 2n-dimen-
sional space of memory-one strategies. When we consider a public
goods game between three players only, we can illustrate the
resulting space of ZD strategies. To this end, let us assume that
players only use reactive strategies (i.e., their cooperation prob-
abilities only depend on the actions of the co-players, but not on
their own action, such that pC;j ¼ pD;j≕pj for all j). For groups of
three players, reactive strategies thus take the form ðp2; p1; p0Þ,
where pi is the probability to cooperate when i of the co-players
cooperated in the previous round. Since 0rpir1, the space of all
reactive strategies takes the form of a cube (Fig. 2). The conditions
for ZD strategies (5) simplify to the condition p2�p1 ¼ p1�p0,
which is a two-dimensional plane in the cube of reactive strate-
gies. This plane has the four corners ALLD, pTFT, ALLC, and the anti-
reciprocal strategy ATFT ¼ ð0;1=2;1Þ. Extortionate strategies are on
the edge between pTFT and ALLD; in particular, they all have p0 ¼ 0
(extortioners never cooperate after mutual defection). In contrast,
generous strategies are on the edge between pTFT and ALLC; in
particular, they must have p2 ¼ 1 (generous players always coop-
erate after mutual cooperation).

3. Evolution of zero-determinant strategies

In the following, we want to explore the role of these various
ZD strategies in evolutionary processes. To get an intuitive

understanding of the possible transitions, let us first focus on a
restricted strategy set. Specifically, we consider the strategies
ALLD, ALLC, and pTFT; moreover, we include a particular instance
of an extortionate strategy (for which we set the slope s¼0.8, as
depicted in Fig. 1B), and a particular instance of a generous
strategy (also having a slope s¼0.8, as depicted Fig. 1D). Using
other instances of extortionate or generous strategies would leave
the main conclusions unchanged, as described in more
detail below.

For the evolutionary dynamics, we consider a population with
N individuals. Let ND, NE, NT, NG, and NC denote the number of
unconditional defectors, extortioners, pTFT players, generous
players, and unconditional cooperators, respectively, such that
NDþNEþNT þNGþNC ¼N. In each time step, groups of size
nrN are randomly formed (by sampling group members from
the population without replacement). Given the composition of
the group, we can calculate the payoff of each player using the
payoff formula (3). By summing up over all possible group
compositions, this yields the expected payoff π̂ i for each strategy
iAfD; E; T ;G;Cg in the population. To model the spread of success-
ful strategies, we consider a pairwise comparison process (Blume,
1993; Szabó and Tőke, 1998; Traulsen et al., 2006; Hilbe et al.,
2013a; Stewart and Plotkin, 2013). In each time step, some
randomly chosen player is given the chance to imitate the strategy
of some other randomly chosen group member. If the focal player's
expected payoff is π̂ , and the role model's payoff is π̂ 0, then the
focal player adopts the role model's strategy with probability

ρ¼ 1
1þexp �βðπ̂ 0 � π̂ Þ� �: ð6Þ

The parameter βZ0 denotes the strength of selection. In the limit
β-0, selection is neutral and the imitation probability simplifies
to ρ¼ 1=2. In the limit of strong selection (β-1) the role model is
imitated only if its strategy is sufficiently beneficial. In addition to
these imitation events, we assume that subjects sometimes
explore new strategies: in each time step, a randomly chosen
player may switch to another strategy with probability μ40 (with
all other strategies having the same chance to be chosen). Overall,
these assumptions lead to a stochastic selection-mutation process,
in which successful strategies have a higher chance to be adopted
(Nowak et al., 2004; Imhof and Nowak, 2006; Antal et al., 2009).

To explore the role of different strategies for the evolutionary
dynamics, we have run simulations for different subsets of ZD
strategies, and for two different group sizes (as shown in Fig. 3).
When groups are small and the population consists only of
defectors and generous players, cooperation cannot emerge when
initially rare (Fig. 3A). Instead, the emergence of cooperation is
dependent on additional strategies that are able to invade ALLD.

p1

ALLC

ATFT

GEN

p0

pTFT

EXT

p2

ALLD

Fig. 2. ZD strategies in the space of reactive strategies for a repeated public goods game between three players. A memory-one strategy is called reactive, if it only depends
on the co-players' behavior, such that pC;j ¼ pD;j ¼ pj. The space of reactive strategies is given by the cube with 0rpjr1. The set of reactive ZD strategies is a plane connecting
the points ALLD¼ ð0;0;0Þ, pTFT ¼ ð1;1=2;0Þ, ALLC ¼ ð1;1;1Þ and the anti-reciprocal strategy ATFT ¼ ð0;1=2;1Þ. Extortioners are on the edge with p0 ¼ 0 (extortioners never
cooperate after mutual defection), whereas generous strategies are on the edge with p2 ¼ 1 (they always cooperate after mutual cooperation).
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For example, extortionate strategies can serve as a catalyst for
cooperation: extortioners are able to subvert defectors, and once
the fraction of extortioners has surpassed a certain threshold,
generous ZD strategies can invade and fixate in the population
(Fig. 3B). A similar effect can be observed by adding pTFT to the
population, which also promotes the evolution of generosity
(Fig. 3C). Compared to pTFT, generous ZD strategies have the
advantage that they are less prone to errors, as they are more
likely to accept a co-player's accidental defection. Adding uncon-
ditional cooperators, however, can destabilize populations of
generous players (Fig. 3D). ALLC players are able to subvert a
generous population by neutral drift, which in turn allows for the
re-invasion of defectors. As in the case of the iterated prisoner's
dilemma, the dynamics of the repeated public goods game may
result in cycles between cooperation and defection.

Larger group sizes further impede the evolution of cooperation:
when the group size is above a certain threshold, evolution either
settles at a population of defectors, or at a population of extor-
tioners (the lower panels in Fig. 3 depict the case n¼8). This effect
of group size is also illustrated in Fig. 4, which shows the average
abundance of each of the five considered ZD strategies as a
function of group size n. Whereas generous strategies are most
abundant when no6, more selfish strategies succeed in large
groups.

To obtain an analytical understanding for these results, let us
calculate under which conditions a mutant ZD strategy can invade
into a population of defectors. If the mutant applies a ZD strategy
with parameters l̂ and ŝ, we can use the payoff equation (3) to
calculate the mutant's payoff in a group of defectors

π̂ ¼ 1� n
rþðn�rÞŝ

� 	
l̂: ð7Þ

Because baseline payoffs satisfy 0r l̂rrc�c, and because slopes
fulfill �1=ðn�1Þr ŝr1 (Hilbe et al., 2014b), it follows that π̂r0,
i.e., no single mutant has a selective advantage in an ALLD
population. In particular, for generous mutants (with l̂ ¼ rc�c
and 0o ŝo1) we get π̂o0, and hence they are disfavored when
rare. However, two strategy classes are able to invade ALLD by
neutral drift: when the mutant either applies an extortionate
strategy (with l̂ ¼ 0), or pTFT (with ŝ ¼ 1), then π̂ ¼ 0. These

calculations confirm that both pTFT and extortionate strategies
can act as a catalyst for cooperation, as they are able to subvert a
population of defectors irrespective of the size of the group.

Similarly, we can also explore the stability of a population of
generous players. As expected, ALLC mutants are always able to
invade by neutral drift (again irrespective of group size). Moreover,
using Eq. (3), it follows that the payoff of a single defector exceeds
the residents' payoff rc�c if

n4
2�s
1�s

; ð8Þ

where 0oso1 is the slope of the generous strategy. Thus, any
given generous strategy can be invaded by ALLD, provided that the
group size n is sufficiently large. Equivalently, to be stable agai-
nst defectors, a generous strategy must not be too generous,
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s41� 1
n�1. In particular, it follows that the set of stable generous

strategies shrinks with the size of the group. Taken together, these
results suggest that it becomes increasingly difficult to achieve
cooperation in large groups.

4. Evolution in the space of memory-one strategies

By focusing on the five ZD strategies above, we have gained
insights into the possible transitions from defection to coopera-
tion; moreover, it has allowed us to show how overly altruistic
strategies (such as ALLC) and large group sizes can lead to the
downfall of cooperation. However, the focus on these five parti-
cular strategies also comes with a risk. We may have neglected
other important strategies, which may have a critical effect on the
evolutionary outcomes. In order to assess how general the above
results are, let us explore in the following how the dynamics of
repeated social dilemmas change when we allow for all possible
memory-one strategies.

Specifically, we apply the adaptive dynamics approach intro-
duced by Imhof and Nowak (2010); that is, we adapt the pre-
viously used evolutionary process as follows. Again, we consider a
population of size N that is engaged in a repeated public goods
game, starting with a homogeneous population of defectors. When
a mutation occurs, the mutant strategy is not restricted to a
particular subset of ZD strategies; instead, mutants may adopt
any memory-one strategy p (i.e., a mutant's memory-one strategy
p is created by drawing 2n random numbers uniformly from the
unit interval [0,1]). We assume that mutations are sufficiently rare,
such that the mutant strategy either fixates, or goes extinct, before
the next mutation occurs (this process may take a long time,see
Fudenberg and Imhof, 2006; Wu et al., 2012). As a consequence,
the dynamics results in a sequence of strategies (p0, p1, p2, …),
where the strategy pt is the strategy applied by the resident after t
mutation events. Given this strategy sequence, we can calculate
the sequence of resident payoffs (π0, π1, π2,…), using the payoff
algorithm described in Appendix A.1. By analyzing these two
sequences for different parameter values n, we can analyze the
impact of group size on the evolution of strategies, and on the
resulting average payoffs.

As shown in Fig. 5A, larger group sizes lead, on average, to
lower population payoffs. This is not only in line with our previous
results depicted in Fig. 4; it also confirms the results of Boyd
(1989), showing that large groups are more likely to end up in
selfish states. However, it is worth noting that the previous results
were based on the comparison of the ALLD strategy with a handful
of other, more cooperative strategies (in Boyd, 1989, defectors
were matched against threshold variants of Tit-for-Tat,which only
cooperate if at least k of the other players cooperated in the
previous round). Fig. 5A shows that this conclusion also holds in
the larger (and more general) strategy space of memory-one
strategies: larger group sizes impede the evolution of cooperation
(which is in line with the simulations presented in Hauert and
Schuster, 1997).

To gain further insights into what drives this downfall of
cooperation, we have also explored which strategies were used
by the residents over the course of the evolutionary process. To
this end, we have applied the method introduced by Hilbe et al.
(2013a): to measure the relative importance of a given strategy p̂,
we have recorded how often the evolutionary process visits the
neighborhood of p̂ (as the strategy's neighborhood, we have taken
the 1% of memory-one strategies that are closest to p̂). Using this
method, we call p̂ being favored by selection if the evolutionary
process spends more than 1% of the time in this neighborhood (i.e.,
if the process spends more time in the neighborhood than
expected under neutrality).

Let us first apply this method to the five ZD strategies
considered before. As shown in Fig. 5B, our results reflect the
qualitative findings in the previous section. Only in small groups,
the generous strategy is favored by selection; as the group size
increases, ALLD and the extortionate strategy become increasingly
successful. For comparison, we have also explored the evolution-
ary success of the traditional champion in repeated games, win-
stay lose-shift (WSLS, see Nowak and Sigmund, 1993b). WSLS only
cooperates if all group members have used the same action in the
previous round, i.e., pC;n�1 ¼ pD;0 ¼ 1, and pS;j ¼ 0 otherwise (in
Hauert and Schuster, 1997 this strategy is called Pavlov, and in
Pinheiro et al., 2014 it is called an All-or-None strategy). In Hilbe
et al. (2014b) it is shown that WSLS is a Nash equilibrium if rZ 2n

nþ1,
which is satisfied for the parameters used for the simulations.
Indeed, Fig. 5B confirms that WSLS is favored by selection for all
considered group sizes, but its relative importance decreases with
n. For no5, the process spends more than 20% of the time in the
neighborhood of WSLS, whereas for n¼7 the neighborhood is only
visited 12% of the time. These results indicate that although WSLS
is able to sustain cooperation even in larger groups, evolutionary
processes tend to favor ALLD and extortionate strategies instead,
which is in line with the downfall of average payoffs as the group
size increases.

5. Performance of ZD strategies against adapting opponents

In the previous two sections, we have considered a traditional
setup to study evolutionary processes. We have assumed that all
players come from the same population, and they all are equally
likely to change their strategies over time. However, for the
iterated prisoner's dilemma it has been suggested that extor-
tioners, and more generally ZD strategies with a positive slope,
are particularly successful when they are stubborn (Press and
Dyson, 2012; Hilbe et al., 2013a; Chen and Zinger, 2014): they
should refrain from switching to other strategies that may be more
profitable in the short run, in order to gain a long-run advantage.
When a player with a fixed strategy is paired with adapting co-
players, the nature of the interaction changes. Instead of a
symmetric and simultaneous game, the interaction now takes
the form of an asymmetric and sequential game (Bergstrom and
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Lachmann, 2003; Damore and Gore, 2011): by choosing a fixed
strategy, the stubborn player moves first, whereas the adapting
players have a chance to evolve, and to move towards a best reply
over time.

To investigate such a setup in the context of multiplayer
dilemmas, let us modify the evolutionary process as follows:
instead of considering a large population of players, let us consider
a fixed group of size n that is engaged in a sequence of repeated
public goods game. One of the players, called the focal player, is
assumed to take a fixed ZD strategy. The other group members are
allowed to change their strategies from one repeated game to the
next. Specifically, we assume that in each time step, one of the
adapting players is chosen at random. This player is then given the
chance to experiment with a different strategy. When the payoff of
the old strategy is π̂ , whereas the new strategy yields π̂ 0, we
assume that the player switches to the new strategy with prob-
ability ρ as specified in Eq. (6). Overall, these assumptions result in
an evolutionary process in which one player sticks to his strategy,
whereas the other players can change to better strategies, given
the current composition of the group.

In Fig. 6, we show the outcome of such an evolutionary process
under the assumption that all players are restricted to the five ZD
strategies used before. Independent of the fixed strategy of the
focal player, all simulations have in common that the focal player's
payoff decreases with group size. Nevertheless, the strategy of the
focal player still has a considerable impact on the resulting group
dynamics. For small group sizes, the simulations confirm that focal
players with a higher slope value s tend to gain higher payoffs (see
Fig. 6, upper panels). The co-players of a focal ALLD or ALLC player
often adapt towards selfish strategies, whereas the co-players of a
focal EXT, pTFT, or GEN player tend to adopt cooperative strategies
(as depicted in Fig. 6, lower panels). Only as the group size
becomes large, this positive effect of the focal player's strategy
on the group dynamics disappears. For example, in groups of size
n¼8, the strategy distribution of the remaining group members is
largely independent of the fixed strategy of the focal individual.
The only exception occurs when the focal player is unconditionally
altruistic (in which the remaining group members favor ALLD,
independent of the group size). These simulations confirm that

stubborn players are most successful when they apply ZD strate-
gies with a high slope value (the most successful strategy in Fig. 6
is pTFT, which is also the strategy that has the maximum value
for s). Higher slope values correspond to players that are more
conditionally cooperative. Thus, when players aim to have a
positive impact on the group dynamics, they need to apply
reciprocal strategies.

6. Discussion

Repeated interactions provide an important explanation for the
evolution of cooperation: individuals cooperate because they can
expect to be rewarded in future (Trivers, 1971; Axelrod and
Hamilton, 1981; Doebeli and Hauert, 2005; Nowak, 2006;
Sigmund, 2010). The framework of repeated games does not
necessarily require sophisticated mental capacities. Several experi-
ments suggest that various animal species are able to use recipro-
cal strategies (Wilkinson, 1984; Milinski, 1987; Stephens et al.,
2002; St. Pierre et al., 2009), and also theory suggests that full
cooperation can already be achieved using simple strategies that
only refer to the outcome of the last round.

Much research in the past has been devoted to explore
conditionally cooperative strategies in pairwise interactions. There
has been considerably less effort to understand the evolution of
reciprocity in larger groups (some exceptions include Boyd, 1989;
Hauert and Schuster, 1997; Kurokawa and Ihara, 2009; Grujic et al.,
2012; Van Segbroeck et al., 2012). This is surprising, because using
the theory of ZD strategies, most of the successful strategies for the
repeated prisoner's dilemma can be naturally generalized to other
social dilemmas, with an arbitrary number of players (Hilbe et al.,
2014b; Pan et al., 2014). In the public goods game, for example, the
set of ZD strategies includes ALLD and ALLC, but also reciprocal
strategies like proportional Tit-for-Tat (pTFT), extortionate and
generous strategies. Herein, we have explored how these strate-
gies fare from an evolutionary perspective.

Our simulations suggest that the evolutionary success of ZD
strategies critically depends on the size of the group. In smaller
groups, the dynamics of strategies is comparable to the dynamics
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in the prisoner's dilemma (Nowak and Sigmund, 1992; Imhof and
Nowak, 2010; Hilbe et al., 2013a): selfish populations can be
invaded by extortioners or pTFT, which in turn can give rise to
the evolution of generous ZD strategies. Generous strategies,
however, can be subverted by unconditional cooperators, which
can lead back to populations of defectors. These evolutionary
cycles collapse when groups become too large. In large groups,
evolution favors selfish strategies instead, resulting in a sharp
decrease in population payoffs. To obtain these results, we have
sometimes restricted the strategy space, by focusing on players
using ZD strategies only. This focus has allowed us to calculate
payoffs efficiently. In general, the time to compute payoffs in
multiplayer games increases exponentially in the size of the group
(which makes it unfeasible to simulate games with more than
5–10 players). But for ZD strategies, payoffs can be computed
directly, using the formula in Eq. (3). The focus on ZD strategies,
however, may come at the risk of neglecting other important
strategies, such as win-stay lose-shift (WSLS). Nevertheless, our
main qualitative results remain unchanged even when we con-
sider the more general space of memory-one strategies (as shown
in Fig. 5).

Overall, we have observed that repeated interactions can only
help sustaining cooperation when groups are sufficiently small.
The downfall of cooperation in large groups can be prevented if
large-scale endeavors have an efficiency advantage: Pinheiro et al.
(2014) observe that WSLS remains successful if r=n is kept constant
(and therefore r needs to increase as n becomes large). However,
for many examples (such as the management of common
resources) such an efficiency advantage seems unfeasible. For such
cases, our results suggest that repeated interactions alone are no
longer able to sustain cooperation.

Yet, human societies are remarkably successful in maintaining
cooperative norms even in groups of considerable size (Fehr and
Fischbacher, 2003), suggesting that large-scale cooperation is
based on additional mechanisms. Three mechanisms seem to be
especially relevant: individuals can maintain cooperation if there
are additional pairwise incentives to cooperate (Rand et al., 2009;
Rockenbach and Milinski, 2006); they can increase their strategic
power by coordinating their actions and by forming alliances
(Hilbe et al., 2014b); or they can implement central institutions
that enforce mutual cooperation (Sigmund et al., 2010, 2011;
Sasaki et al., 2012; Hilbe et al., 2014b; Schoenmakers et al.,
2014). Interestingly, each of these additional mechanisms is costly,
and thus requires an evolutionary explanation on its own. In
particular, these additional mechanisms are only likely to evolve
when other, more efficient ways to establish cooperation fail.
Herein, we have shown such a failure to establish cooperation
when repeated interactions take place in large groups.
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Appendix A

A.1. Payoffs in groups of memory-one players

In the following, we describe how one can calculate the average
payoffs in a group, under the assumption that all players use
memory-one strategies. To this end, consider a group of size n and

suppose player i applies the memory-one strategy pi ¼ piC;n�1;



…; piD;0Þ. To calculate payoffs, we use the Markov-chain approach
presented in Hauert and Schuster (1997). The states of the Markov
chain are the possible outcomes of a given round: if the action of
player i in a given round is Si, then we can write the outcome of
that round as a vector σ ¼ ðS1;…; SnÞAfC;Dgn. Let jσ j denote the
number of cooperators in σ. Given each player's memory-one
strategy pi, and the outcome σ of the previous round, one can
calculate the transition probability mσ;σ0 to observe the outcome
σ0 ¼ ðS01;…; S0nÞ in the next round. Since players act independently,
mσ;σ 0 is a product with n factors, mσ;σ0 ¼∏n

i ¼ 1qi, where

qi ¼

piC;j σ j �1 if Si ¼ C; S0i ¼ C

1�piC;j σ j �1 if Si ¼ C; S0i ¼D

piD;j σ j if Si ¼D; S0i ¼ C

1�piD;j σ j if Si ¼D; S0i ¼D:

8>>>>><
>>>>>:

ð9Þ

The transition probabilities mσ;σ0 can be collected in a stochastic
transition matrix M ¼ mσ;σ0

� �
. In most cases, this transition matrix

has a unique left eigenvector v¼ ðvσÞ with respect to the leading
eigenvalue 1, such that v¼ v �M, and

P
σvσ ¼ 1. In that case, the

entries vσ give the fraction of rounds in which the players find
themselves in state σ over the course of the game. For each of
these states σ, we can define the resulting payoff giσ for player i as

giσ ¼
aj σ j �1 if Si ¼ C
bj σ j if Si ¼D

(
ð10Þ

As a result, we can calculate the average payoff πi of player i over
the course of the repeated multiplayer game as

πi ¼ gi � v¼
X
σ
giσ � vσ : ð11Þ

In a few cases, however, the invariant distribution of the
transition matrix M may not be unique. This happens, for example,
when all players apply the strategy pTFT, such that the payoffs
critically depend on the players' cooperation probabilities in the
initial round. To circumvent these technical difficulties, we make
the assumption that players sometimes commit errors with prob-
ability ε. In effect, this assumption implies that instead of the
intended strategy p, players use the memory-one strategy
pðεÞ ¼ ð1�εÞpþεð1�pÞ, where 1 is the corresponding vector with
all entries being one. For any 0oεo1, the resulting invariant
distribution vðεÞ is unique. Payoffs are then defined by considering
the limit when the error rate goes to zero (see also Section 3.14 in
Sigmund, 2010),

πi ¼ lim
ε-0

gi � vðεÞ: ð12Þ

As an example, this definition of payoffs implies that a homo-
geneous group of pTFT-players yields a payoff of ðrc�cÞ=2. For
groups in which vð0Þ is unique, the payoff formulas (11) and (12)
give the same result.

A.2. Payoffs in groups of ZD strategists

When all players of a group apply a ZD strategy, the calculation
of payoffs becomes considerably more simple. To show this, let us
consider a group of n players, where each of the players applies
some ZD strategy with parameters li and si. It follows that each of
the players enforces the payoff relationship

π� i ¼ siπiþð1�siÞli: ð13Þ
Instead of a relationship between player i's payoff πi and the

average payoff of the co-players π� i, we can rewrite this equation
such that it is a function between πi and the average payoff of the
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group (including i)

π ¼ ðn�1Þsiþ1
n

πiþ
ðn�1Þð1�siÞ

n
li; ð14Þ

with π ¼ Pn
j ¼ 1 πj=n. This confirms that player i's payoff can be

calculated once the average payoff of the group π is known. To
calculate π , we use elementary transformations to write the
relationship (14) as

κi � π�κi � li ¼ πi�π ; ð15Þ
with

κi≔
ðn�1Þð1�siÞ
1þðn�1Þsi

: ð16Þ

Summing up over all players 1r irn then confirms thatP
κi � π� P

κi � li ¼ 0, and therefore

π ¼
Xn
j ¼ 1

κj � lj

0
@

1
A Xn

j ¼ 1

κj

0
@

1
A,

ð17Þ

Substituting this result into (15) then leads to the conclusion

πi ¼ ðκiþ1Þ
Pn

j ¼ 1 κj � ljPn
j ¼ 1 κj

�κi � li: ð18Þ

This allows a direct calculation of the payoffs from the parameters
li and si.

A.3. Zero-determinant strategies for the public goods game

In the public goods game, cooperators contribute an amount
c40 into a common pool. Total contributions are then multiplied
by some factor 1oron, and equally divided among all group
members. In the following, we aim to provide an alternative
characterization of ZD strategies for the public goods game (which
does not depend on free parameters such as l, s, and ϕ).

Proposition 1 (Characterization of ZD-strategies for the public
goods game). A memory-one strategy p¼ ðpS;jÞ for the public goods
game is a ZD strategy if and only if

pS;jþ1�pS;j ¼ pS;j�pS;j�1 for SAfC;Dg; and 1r jrn�2

pD;jþ1�pC;jþ1 ¼ pD;j�pC;j for 0r jrn�2: ð19Þ

Proof.

()) By plugging the values of aj ¼ ðjþ1Þrc
n �c and bj ¼ jrc

n into the
definition of ZD strategies (1), it follows that any ZD
strategy satisfies the following two conditions:

pC;jþ1�pC;j ¼ϕ �ð1�sÞrc
n
þ c
n�1

h i
pD;jþ1�pD;j ¼ϕ �ð1�sÞrc

n
þ c
n�1

h i
: ð20Þ

Since the two terms on the right hand side coincide, it
follows that the two expressions on the left hand side
coincide, and thus

pD;jþ1�pC;jþ1 ¼ pD;j�pC;j ð21Þ
for all j. Moreover, since the two terms on the right hand
side of (20) are independent of j, we can also conclude that

pS;jþ1�pS;j ¼ pS;j�pS;j�1 ð22Þ
for SAfC;Dg and 1r jrn�2.

(() Conversely, for a given memory-one strategy that satisfies
Eq. (19), let us define

l¼
ðr�1Þc � pD;j� jðpC;jþ1�pC;jÞ


 �
1�ðn�1Þ � ðpC;jþ1�pC;jÞþðpD;j�pC;jÞ

s¼ �ðn�1Þr � ðpC;jþ1�pC;jÞþðn�nrþrÞ � ðpD;j�pC;jÞþðn�nrþrÞ
ðn�1Þðn�rÞ � ðpC;jþ1�pC;jÞ�ðn�1Þr � ðpD;j�pC;jÞ�ðn�1Þr

ϕ¼ �ðn�1Þðn�rÞ � ðpC;jþ1�pC;jÞþðn�1Þr � ðpD;j�pC;jÞþðn�1Þr
cnðr�1Þ

ð23Þ
Let us first show that these parameters are independent of
j. For s and ϕ, the independence of j follows immediately
from conditions (5). But also the parameter l is indepen-
dent of j, which can be shown by repeatedly using (5)

pD;j� jðpC;jþ1�pC;jÞ ¼ pD;j� jðpD;jþ1�pD;jÞ
¼ pD;j� jðpD;j�pD;j�1Þ

¼ pD;j�
Xj

k ¼ 1

ðpD;k�pD;k�1Þ

¼ pD;j�ðpD;j�pD;0Þ
¼ pD;0: ð24Þ

Thus, the above parameters l, s, and ϕ are indeed inde-
pendent of j. Then,

pC;j ¼ 1þϕ ð1�sÞðl�ajÞ�
n� j�1
n�1

ðbjþ1�ajÞ
� �

pD;j ¼ϕ ð1�sÞðl�bjÞþ
j

n�1
ðbj�aj�1Þ

� �
; ð25Þ

which can be shown by plugging the values of l, s, and ϕ in
(23) into the right hand side of (25). Overall, (25) confirms
that p is a ZD strategy. □

We note that characterization (19) does not depend on the
game parameters: the set of ZD strategies is the same for all public
good games (no matter what the multiplication factor r is). It also
follows that all unconditional strategies (such as ALLC and ALLD)
are ZD strategies.
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